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1 Introduction

The structure of the tensor hierarchy1 of general bosonic 4-dimensional field theories has re-

cently been elucidated in ref. [11] and applied to the search of higher-rank p-form potentials

in gauged N = 1, d = 4 supergravity in ref. [12].

It is natural to try to extend the recently obtained results on 4-dimensional tensor

hierarchies to higher dimensions. The 4-dimensional results suggest the existence of some

general features common to all d-dimensional tensor hierarchies:

1. The one-to-one relation between (d−2)-form potentials (which always carry an adjoint

index) and the symmetries of the theory. We will henceforth refer to them as adjoint-

form potentials or simply ad-form potentials.

2. The one-to-one relation between the (d − 1)-form potentials and the components of

the embedding tensor (and, possibly, other deformation tensors). Following ref. [13],

we will call these potentials de-form potentials.

3. The one-to-one relation between the top- (d-) form potentials and all the constraints

satisfied by the embedding tensor (and, possibly, other deformation tensors).

Some of these relations have been discussed in ref. [14].

In this paper we are going to study in detail 5- and 6-dimensional field theories and we

are going to find the general rules that determine the structure of their associated tensor

hierarchies. The special case of maximal supergravity in five and six dimensions has been

considered in refs. [15, 16].

As we are going to see, there are important differences between the maximal super-

gravity case and the general case, the principal difference being the existence of more

independent deformation tensors in addition to the embedding tensor. These deformation

tensors switch on new couplings such as massive deformations, unrelated to (but compatible

with) Yang-Mills gauge symmetries, which are determined by the embedding tensor alone.

In maximal supergravities, supersymmetry determines these deformation tensors entirely

in terms of the gauge group and the embedding tensor. In the general case the deformation

tensors are, up to a few constraining relations, independent of the embedding tensor.

Taking into account the existence of several deformation tensors we find that the

highest-rank potentials of the tensor hierarchy can be constructed as follows. Let us denote

by AI the 1-forms of the d-dimensional tensor hierarchy, by ϑI
A the embedding tensor where

A is an adjoint index of some symmetry group and by c♯ the deformation tensors (including

the embedding tensor). Here ♯ denotes the corresponding indices. The magnetic duals of

the 1-forms will be the hierarchy’s (d − 3)-forms ÃI , with (d − 2)-form field strengths F̃I .

These will contain a Stückelberg coupling to the ad-form potentials that we are going to

denote by CA, and the coupling tensor will be the embedding tensor ϑI
A, so

F̃I ∼ DÃI + · · · + ϑI
ACA . (1.1)

1Tensor hierarchies have been introduced in refs. [1–3]. They arise naturally in the embedding tensor

formalism [1, 2, 4–6]. For recent reviews see refs. [7–10].
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The (d−1)-form field strength for CA, denoted here by GA, can be obtained by hitting

the above expression with a covariant derivative D. This gives rise to an expression for

ϑI
AGA and determines GA up to terms that vanish upon contraction with ϑI

A. These

extra terms in GA form Stückelberg couplings to de-form potentials. The coupling tensors

will vanish upon contraction (of the adjoint index) with the embedding tensor. They can

be constructed in the following way. All the deformation tensors must be gauge-invariant

tensors, and, if their gauge transformations are written as

δΛc♯ = −ΛIQI
♯ , (1.2)

where the ΛI(x) are the 0-form gauge transformation parameters of the 1-forms AI , then,

we find a constraint

QI
♯ ≡ −δIc

♯ = 0 , (1.3)

for each of them. All these constraints are, by construction, proportional to the embed-

ding tensor

δΛc♯ = ΛIϑI
AδAc♯ , (1.4)

and can be written in the form

QI
♯ = −ϑI

AYA
♯ , YA

♯ ≡ δAc♯ , (1.5)

which provides us with as many tensors YA
♯ as we have deformation tensors c♯. We will

follow the above convention to normalize the constraints Q and associated Y -tensors.

The (d − 1)-form field strengths will have the form

GA ∼ DCA + · · · +
∑

♯

YA
♯D♯ . (1.6)

where we have introduced as many de-form potentials D♯ as we have deformation tensors

c♯, transforming in the representation conjugate to the representation in which the c♯

transform. This is precisely the number of de-form potentials that we need to introduce in

the action as Lagrange multipliers enforcing the constancy of the deformation tensors
∫ ∑

♯

dc♯ ∧ D♯ . (1.7)

Finally, the d-form field strengths K♯ of the de-form potentials D♯ will have Stückelberg

couplings to top-form potentials. As different from the 4-dimensional case in which there

is only one Y -tensor and the Stückelberg coupling tensors (W ) are annihilated by the Y -

tensor, in the general case the W -tensors are not individually annihilated by the Y -tensors.

Instead, there are combinations of Y - and W -tensors that vanish.

These combinations can be found systematically as follows. Let us introduce as many

top-form potentials as there are constraints satisfied by the deformation tensors. This is

precisely the number of top-forms that we need to introduce in the action as Lagrange

multipliers enforcing all the algebraic constraints. We will have top forms EI
♯ associated

to the constraints QI
♯ that express the gauge-invariance of the deformation tensors, but we

– 3 –
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will have more top-forms, associated to other constraints. Let us denote all the constraints

satisfied by all the deformation tensors Q♭ and the top forms by E♭ and let us construct

the formal combination ∑

♭

Q♭E♭ , (1.8)

which vanishes because it is linear in the constraints. This is the term one needs to add to

the action in order to enforce the constraints Q♭ = 0.

The infinitesimal linear transformations of this term generated by the matrices TA,

that we will denote by δA, also vanish because these transformations are proportional to

the constraints Q♭. Since the constraints Q♭ are functions of the deformation tensors, using

the chain rule we can write this vanishing infinitesimal transformation as

0 = δA

(
∑

♭

Q♭E♭

)
=
∑

♭


∑

♯

δAc♯ ∂Q♭

∂c♯


E♭ =

∑

♭


∑

♯

YA
♯ ∂Q♭

∂c♯


E♭ , (1.9)

where we have made use of the general definition of the Y -tensors eq. (1.2). Since, in this

expression, the top forms E♭ have arbitrary values, we get, for each of them, the identity

∑

♯

YA
♯W♯

♭ = 0 , (1.10)

where we have defined the W -tensors

W♯
♭ ≡

∂Q♭

∂c♯
. (1.11)

Then, the d-form field strengths K♯ of the de-form potentials D♯ will have the gen-

eral form

K♯ ∼ DD♯ + · · · +
∑

♭

W♯
♭E♭ . (1.12)

This scheme leads to a number of ad-form potentials CA equal to the number of

(continuous) symmetries and, therefore, to Noether current 1-forms jA. This is what we

expect since, in order not to add further continuous degrees of freedom to the theory the

(d − 1)-form field strengths GA must be dual to the Noether currents

GA ∼ ⋆jA . (1.13)

This scheme also leads to a number of de-form potentials D♯ that is equal to the number of

deformation tensors c♯. As mentioned above, we need this number of deformation tensors

to enforce the constraints dc♯ = 0 in the action. With a Lagrange multiplier term enforcing

the constancy of the deformation tensors we can also vary the action with respect to the

deformation tensors which have off-shell been promoted to fields. This leads to duality

relations for their d-form field strengths K♯ of the form

K♯ ∼ ⋆
∂V

∂c♯
. (1.14)

Finally, as already said, this scheme leads to one top-form potential for each constraint

satisfied by the deformation tensors.

– 4 –
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The tensor hierarchy can be considered to be a technique that can be used to predict

in which way a given theory can be deformed. To make such a prediction one can construct

the de- and top-form field content of a particular theory. The above scheme is only based on

necessary conditions and is not guaranteed to be sufficient to construct all possible de- and

top-form potentials of a particular (bosonic) field theory.2 In order to see in which manner

the above described construction of the de-forms is not sufficient let us consider possible

sources of it failing to be so. For example, it could happen that in order for GA to transform

gauge-covariantly we need to introduce a Stückelberg coupling with a tensor YA which is

not of the form δAc where c is some deformation tensor but which nonetheless satisfies

ϑI
AYA = 0. Even though we have never encountered such a Y -tensor we have not been

able to disprove their existence. Similarly, there may be additional top-forms contracted

with W -tensors that are not of the form eq. (1.11), but which nonetheless satisfy eq. (1.10).

Once again we did not prove that every W -tensor that satisfies eq. (1.10) is of the form

eq. (1.11) but we are not aware of any counterexamples. Another source of failure of the

above described program to find all the de- and top-form potentials is that there may

exist de- and top-form potentials which cannot appear in any Stückelberg couplings. This

happens for example in N = 1, d = 4 supergravity where there exists a 3-form potential

that is dual to the superpotential ref. [12]. This 3-form does not show up in any of the

Stückelberg couplings of the 4-dimensional tensor hierarchy and there exists no choice of

deformations tensors for which it would show up in a Stückelberg coupling.

The construction of any tensor hierarchy starts with writing down the most general

form of the 2-form field strength F I which includes both Yang-Mills pieces as well as

Stückelberg couplings to 2-forms. From this field strength, which at this stage should

be thought of as an Ansatz, one can construct a Bianchi identity by hitting it with a

covariant derivative D. From DF I we can obtain that part of the field strength of the

2-forms that does not contain the Stückelberg couplings to the 3-forms. By making once

again an Ansatz for such a coupling we can proceed to compute the Bianchi identity of the

3-form field strengths and continue in this way until we reach the d-form field strengths

of the de-form potentials which contain Stückelberg couplings to the top-form potentials.

The Ansätze made throughout this procedure will then lead to a nested set of Bianchi

identities provided the various Stückelberg coupling tensors satisfy certain relations. Once

these relations have been obtained we have at our disposal the most general set of tensor

couplings3 that a particular bosonic theory can have and we may proceed to construct

Lagrangians for these tensors.

This program will be performed in detail in section 2 for the case of 5-dimensional field

theory and in the section 3 for the case of 6-dimensional field theory.

2When there are also fermions the tensor hierarchy may get extended due to ad-forms that are dual

to currents bilinear in fermions that appear in the 1-form equations of motion. These ad-forms may then

have Stückelberg couplings with new de-forms, etc. This has been shown to happen in N = 1, d = 4

supergravity in ref. [12].
3As mentioned before the tensor hierarchy does not predict those potentials that cannot appear in the

Stückelberg couplings. These tensors must be dealt with separately.
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2 The d = 5 general tensor hierarchy

2.1 d = 5 bosonic field theories

In d = 5 dimensions vectors are dual to 2-forms. We can, therefore, use as a starting

point, theories with spacetime metric gµν , scalars φx parametrizing a target space with

metric gxy(φ) and 1-forms AI only. The most general action with (ungauged and massless)

Abelian gauge-invariance δAI = −dΛI , no gauged symmetries and terms with no more

than two derivatives that we can write for these fields is4

S =

∫ {
⋆R+

1

2
gxy(φ)dφx∧⋆dφy−

1

2
aIJ(φ)F I∧⋆F J−⋆V (φ)+

1

3
CIJKF I∧F J∧AK

}
, (2.1)

where

F I = dAI , (2.2)

and where gxy(φ) and aIJ(φ) are symmetric, positive-definite matrices that depend on the

scalar fields, V (φ) is a scalar potential and CIJK is a constant, totally symmetric, tensor;

any other components of CIJK apart from the totally symmetric ones would not contribute

to the action and, therefore, without loss of generality, they are set equal to zero.

This action takes exactly the same form as the bosonic action of minimal d = 5 su-

pergravity coupled to vector supermultiplets and hypermultiplets (if we assume all the

corresponding scalars are represented by the φx) given in ref. [17]. However, although

probably most interesting applications of this work will be in the context of supergravity

theories, we stress that here we are considering a general field theory in which there is no

underlying real special geometry, the objects gxy(φ), aIJ(φ), and CIJK need not be related

by real special geometry as in the supersymmetric case and the scalars parametrize arbi-

trary target spaces and occur in a number which is unrelated to the number of vector fields.

From this point of view, the tensor CIJK is just a set of possible deformations of the

minimally coupled theory (which has CIJK = 0). It gives rise to vector couplings unrelated

to Yang-Mills gauge symmetry. This type of couplings are not possible in d = 4 dimensions.

If we only vary the 1-forms in the action, we get

δS =

∫ {
−δAI ∧ ⋆

δS

δAI

}
, ⋆

δS

δAI
= d(aIJ ⋆ F J) − CIJKF J ∧ FK , (2.3)

and, on account of eq. (2.2), the equation of motion can be rewritten in the form

d(aIJ ⋆ F J − CIJKF J ∧ AK) = 0 . (2.4)

This suggests to define the 2-forms BI dual to the 1-forms AI via

aIJ ⋆ F J − CIJKF J ∧ AK ≡ dBI . (2.5)

Since, by definition, aIJ ⋆ F J is gauge-invariant, the gauge-invariant field strengths of the

2-forms can be defined by

HI ≡ dBI + CIJKAJ ∧ dAK , (2.6)

4Our conventions for differential forms, Hodge duals etc. can be found in appendix A.
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so that we have the Bianchi identity and duality relation

dHI = CIJKF J ∧ FK , HI = aIJ ⋆ F J . (2.7)

The gauge transformations of the 1- and 2-forms can be inferred from the gauge-

invariance of their field strengths:

δΛAI = −dΛI , (2.8)

δΛBI = dΛI + CIJKΛJFK . (2.9)

The construction of the tensor hierarchy based on the embedding-tensor formalism

should reproduce these results in the ungauged limit ϑI
A (with any possible other defor-

mation tensor not being CIJK sent to zero as well).

2.2 Gaugings and massive deformations

Let us consider the infinitesimal global transformations with constant parameters αA of

the scalars φx, 1-forms AI and dual 2-forms BI :

δαφx = αAkA
x(φ) , (2.10)

δαAI = αATA J
IAJ , (2.11)

δαBI = −αATA I
JBJ , (2.12)

where the matrices TA belong to some representation of a group G and the kA
x(φ) are the

contravariant components of vectors defined on the scalar manifold. Some of the matrices

and the vectors may be identically zero. They satisfy the algebras

[TA, TB ] = −fAB
CTC , [kA, kB ] = −fAB

CkC . (2.13)

These transformations will be global symmetries of the theory constructed in the pre-

vious section if the following four conditions are met:

1. The vectors kA
x(φ) are Killing vectors of the metric gxy(φ) of the scalar manifold.

2. The kinetic matrix aIJ satisfies the condition

£AaIJ = −2TA (I
KaJ)K , (2.14)

where £A denotes the Lie derivative along the vector kA.

3. The deformation tensor is invariant

δACIJK ≡ YA IJK = −3TA (I
LCJK)L = 0 . (2.15)

4. The scalar potential is invariant

£AV = kAV = 0 . (2.16)

– 7 –
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In what follows, we will relax these conditions. Conditions 1 and 2 above cannot

be relaxed but it is unnecessarily restrictive to demand that the symmetry group of the

minimally coupled undeformed theory which has CIJK = 0 and V = 0 is equal to the

symmetry group G. More generally we can allow δACIJK = YA IJK 6= 0 and £AV =

kAV 6= 0 and instead consider that subgroup of G under which CIJK and V are invariant.

In this way we have the situation that CIJK and V introduce deformations that break the

symmetry group G of the undeformed theory to a subgroup of G.

From the point of view of the construction of gauge-invariant theories using the embed-

ding tensor formalism the above conditions 3 and 4 are also unnecessary. In general, the

embedding tensor projects the above transformations into a smaller subgroup of G. The

theory that we will construct will be only required to be invariant under gauge transfor-

mations of this smaller subgroup, but not necessarily under all the above global transfor-

mations. In the ungauged limit, i.e. setting the embedding tensor equal to zero, the theory

will be invariant under the global transformations of the gauge group and not necessarily

under any other global transformations.

From the general construction of the de- and top-form potentials, explained in the

introduction, we know that if the tensor CIJK is invariant under the transformations gen-

erated by all the matrices TA, then the tensor YA IJK will vanish identically and there

will not be a non-trivial 4-form potential DIJK dual to CIJK. There are cases of physical

interest (such as the maximal d = 5 supergravity of ref. [15]) in which this is what happens.

After these comments, we can now proceed to gauge the above transformations. This

can be done by promoting the constant parameters αA to arbitrary functions and using the

1-forms as gauge fields. The embedding tensor ϑI
A will relate the symmetry to be gauged

with the 1-form that will gauge it:

αA(x) ≡ ΛIϑI
A . (2.17)

Thus, we want the theory to be invariant under the local transformations of the scalars

δΛφx = ΛIϑI
AkA

x(φ) , (2.18)

and for this we need the covariant derivatives

Dφx ≡ dφx + AIϑI
AkA

x(φ) . (2.19)

It can be checked that Dφx transforms covariantly if we impose the quadratic constraint

QIJ
A ≡ −δIϑJ

A = ϑI
BTB J

KϑK
A − ϑI

BϑJ
CfBC

A = 0 , (2.20)

and impose that the vectors transform according to

δΛAI = −DΛI + ∆AI = −
(
dΛI + ϑJ

ATA K
IAJΛK

)
+ ∆AI , ϑI

A∆AI = 0 , (2.21)

where the term ∆AI is, otherwise and so far, arbitrary.

The above quadratic constraint means that ϑI
A is an invariant tensor since

δΛϑI
A = −ΛJQJI

A = ΛJϑJ
BYB I

A = 0 , (2.22)

– 8 –
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where

YA I
B ≡ δAϑI

B = ϑI
CfAC

B − TA I
KϑK

B , (2.23)

is the Y -tensor associated to the quadratic constraint according to the general formalism

explained in the introduction.

2.2.1 The 2-form field strengths F I

The next step is to construct the field strength F I of the 1-forms. If we take the covariant

derivative of the scalars’ covariant “field strength” Dφx we find

DDφx =

(
dAI +

1

2
XJK

IAJK

)
ϑI

AkA
x , (2.24)

where, from now on, we use the shorthand notation5

AI···J ≡AI ∧· · ·∧AJ , dAI···J ≡dAI ∧· · ·∧dAJ , F I···J ≡F I ∧· · ·∧F J , etc. (2.25)

and where we have defined, as is customary, the X generators

XIJ
K ≡ ϑI

ATA J
K . (2.26)

Since the left hand side of the above Bianchi identity is covariant, by construction, the

right hand side is also covariant and it is natural6 to define

DDφx = F IϑI
AkA

x , (2.27)

F I ≡ dAI +
1

2
XJK

IAJK + ∆F I , (2.28)

ϑI
A∆F I = 0 . (2.29)

Requiring gauge-covariance of F I one finds that the term ∆F I must transform according to

δΛ∆F I = −D∆AI + 2X(JK)
I

[
ΛJFK +

1

2
AJ ∧ δΛAK

]
. (2.30)

In order to satisfy the constraint ϑI
A∆F I = ϑI

A∆AI = 0 we introduce a Stückelberg

tensor ZIJ satisfying

QAI ≡ ϑJ
AZJI = 0 , (2.31)

and define

∆F I ≡ ZIJBJ , ∆AI ≡ −ZIJΛJ , (2.32)

where ΛI are the 1-form gauge parameters under which the 2-forms BI must transform.

Observe that the constraint (2.31) tells us that the 2-forms can only occur as

Stückelberg fields in the ungauged vector field strengths. Only the ungauged vector fields

can be eaten up by the 2-forms which will become massive. We are thus describing through

5We will use a similar notation for exterior products of 2-forms and 3-forms throughout the rest of the

paper, for example: BIJ ≡ BI ∧ BJ etc.
6Actually, it can be argued that this is the only solution that does not require the introduction of

additional fields in the theory.
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the introduction of ZIJ besides gaugings also massive deformations of the theory described

in section 2.1.

The gauge transformation of ∆F I implies

ZIJδΛBJ = ZIJ
DΛJ + 2X(JK)

I

[
ΛJFK +

1

2
AJ ∧ δΛAK

]
. (2.33)

This solution will only work if X(JK)
I ∼ ZILOJKL for some tensor OJKL symmetric, at

least, in the last two indices. It is natural to identify this tensor with the fully symmet-

ric tensor CIJK that we know can occur in a Chern-Simons term in the action. This

identification allows us to recover the theory of section 2.1 in the ϑI
A, ZIJ → 0 limit.

Thus, we impose the constraint7

QJK
I ≡ X(JK)

I − ZILCJKL = 0 , (2.34)

and find that the field strength

F I = dAI +
1

2
XJK

IAJK + ZIJBJ , (2.35)

transforms gauge-covariantly under the gauge transformations:

δΛAI = −DΛI − ZIJΛJ , (2.36)

δΛBJ = DΛJ + 2CJKL

(
ΛKFL +

1

2
AK ∧ δΛAL

)
+ ∆BJ , ZIJ∆BJ = 0 , (2.37)

where the possible additional term ∆BJ will be determined by the requirement of gauge-

covariance of the 3-form field strength HJ .

The Stückelberg tensor ZIJ and the Chern-Simons tensor CIJK have to be gauge-

invariant tensors, which, following the convention in eq. (1.2), leads to the constraints

QL
IJ ≡ δLZIJ = −

(
XLK

IZKJ + XLK
JZIK

)
= 0 , (2.38)

QIJKL ≡ δICJKL = 3XI(J
MCKL)M = 0 , (2.39)

and to the Y -tensors

YA
IJ ≡ δAZIJ = TA K

IZKJ + TA K
JZIK , (2.40)

and YA IJK given in eq. (2.15), which are both annihilated by the embedding tensor by

virtue of the above constraints.

2.2.2 The 3-form field strengths HI

The covariant derivative of the 2-form field strength F I , after use of the generalized Jacobi

identities

X[JK
MXL]M

I =
2

3
ZINX[JK

MCL]MN , (2.41)

7In d = 4 dimensions there is a similar constraint which is linear in the embedding tensor. In d = 5 the

constraint has terms linear and of zeroth order in the embedding tensor.
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is

DF I = ZIJ

[
DBJ + CJKLAK ∧ dAL +

1

3
CJP [KXML]

P AKML

]
, (2.42)

which leads us to define the 3-form field strength

DF I = ZIJHJ , (2.43)

HJ ≡ DBJ + CJKLAK ∧ dAL +
1

3
CJP [KXML]

P AKML + ∆HJ , (2.44)

ZIJ∆HJ = 0 , (2.45)

where ∆HJ will be determined, together with ∆BJ by requiring gauge-covariance of HJ .

Instead of constructing gauge transformations realizing gauge-covariance we construct a

Bianchi identity for HI in terms of gauge-covariant objects.

Let us first take the covariant derivative of both sides of the Bianchi identity of F I

eq. (2.43). Using the Ricci identity

DDF I = XJK
IF JK = ZILCLJKF JK , (2.46)

we find

ZIL(DHL − CLJKF JK) = 0 , (2.47)

which implies that the Bianchi identity for HI must have the form8

DHI = CIJKF JK + ∆DHI , ZJI∆DHI = 0 , (2.48)

which, in turn, implies that ∆DHI must be proportional to the invariant tensor(s) we men-

tioned before. To find them, we have to compute directly DHI using the above expression.

In order to make progress in the calculation we must impose the constraint

ZIJ = −ZJI . (2.49)

This property implies that the quadratic constraint QI
JK and tensor YA

JK can be written

in the form

QI
JK = 2XIL

[JZK]L , YA
JK = −2TA L

[JZK]L . (2.50)

A tensor with properties similar to those of ZIJ appears in N = 2, d = 5 supergravity with

general couplings to vector and tensor supermultiplets in ref. [17].

2.2.3 The 4-form field strengths GA

Using eqs. (2.31) and (2.49) we find that ∆HI and ∆DHI can be taken to be

∆HI = ϑI
ACA , ∆DHI = ϑI

AGA , (2.51)

where ϑI
AGA is the gauge-covariant field strength of the 3-forms ϑI

ACA. This determines

the Bianchi identity of HI to be

DHI = CIJKF JK + ϑI
AGA . (2.52)

8∆DHI should not be confused with D∆HI .
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An explicit computation of DHI gives

GA = DCA + TA K
I

[(
FK −

1

2
ZKLBL

)
∧ BI +

1

3
CILMAKL ∧ dAM

+
1

12
CILP XMN

P AKLMN

]
+ ∆GA , (2.53)

ϑI
A∆GA = 0 . (2.54)

According to the general scheme outlined in the introduction we expect that ∆GA will be

formed out of terms proportional to the three Y -tensors YA I
B = δAϑI

B , YA
IJ = δAZIJ ,

YA IJK = δACIJK associated to the three deformation tensors, contracted with some de-

form potentials. Each of these Y -tensors is annihilated by the embedding tensor. We will

next confirm that this is indeed what happens.

2.2.4 The 5-form field strengths K

To find the invariant tensors and de-forms that make up ∆GA we follow the same procedure

as before and take the covariant derivative of both sides of the Bianchi identity (2.52) for

HI . Using the Ricci identity

DDHI = −ϑJ
ATA I

KF J ∧ HK , (2.55)

and the Bianchi identities for F I and HI , we get

ϑI
A
[
DGA − TA J

KF J ∧ HK

]
= 0 , (2.56)

from which it follows that the Bianchi identity for GA will have the form

DGA = TA J
KF J ∧ HK + ∆DGA , ϑI

A∆DGA = 0 . (2.57)

This implies that ∆DGA must be proportional to the same invariant tensors that ∆GA is

proportional to. A direct calculation of DGA gives the result

DGA = TA K
IFK ∧ HI

+YA
IJ

[
1

2
DBI − HI

]
∧ BJ

+YA I
B

[
(F I − ZILBL) ∧ CB +

1

12
TB J

MCKMLAIJK ∧ dAL

+
1

60
TB J

NCKPNXLM
P AIJKLM

]

+YA IJK

[
1

3
AI ∧ dAJK +

1

4
XLM

KAILM ∧ dAJ +
1

20
XLM

JXNP
KAILMNP

]

+D∆GA . (2.58)

This tells us that we must introduce three de-forms DIJ , DI
A and DIJK , with the same

symmetries as the respective Y -tensors, and take

∆GA = YA
IJDIJ + YA I

BDI
B + YA IJKDIJK , (2.59)
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in order for DGA to be gauge-covariant. This is simply because the terms proportional
to the Y -tensors must each be gauge-covariant and this can only be the case of they form
field strengths of de-forms. The ad-form field strength GA and its Bianchi identity take
the final form

GA = DCA+TA K
I

[(
FK−

1

2
ZKLBL

)
∧BI +

1

3
CILMAKL ∧ dAM +

1

12
CILP XMN

P AKLMN

]

+YA
IJDIJ + YA I

BDI
B + YA IJKDIJK , (2.60)

DGA = TA K
IFK ∧ HI + YA

IJKIJ + YA I
BKI

B + YA IJKKIJK , (2.61)

where

KIJ ≡ DDIJ −

[
H[I −

1

2
DB[I

]
∧ BJ ] + ∆KIJ , (2.62)

KI
B ≡ DDI

B + (F I − ZILBL) ∧ CB +
1

12
TB J

MCKMLAIJK ∧ dAL

+
1

60
TB J

NCKPNXLM
P AIJKLM + ∆KI

B , (2.63)

KIJK ≡ DDIJK+
1

3
A(I ∧ dAJK)+

1

4
XLM

(KAI|LM ∧ dA|J)+
1

20
XLM

(JXNP
KAI)LMNP

+∆KIJK , (2.64)

in which ∆KIJ , ∆KI
B and ∆KIJK satisfy

YA
IJ∆KIJ + YA I

B∆KI
B + YA IJK∆KIJK = 0 . (2.65)

As explained in the introduction the terms ∆K will be contractions of (W -)tensors

and 5-form potentials. To determine the W -tensors and the 5-form potentials, we take the

covariant derivative of the Bianchi identity of GA, eq. (2.61). Ignoring the fact that we are

working in d = 5 dimensions we get

YA
IJ

[
DKIJ−

1

2
HIJ

]
+YA I

B
[
DKI

B−F I ∧ GB

]
+YA IJK

[
DKIJK−

1

3
F IJK

]
=0 . (2.66)

If we take the covariant derivative of the above expression, we find

FK ∧ KMN{+2YA
IMXKI

N − YA K
BYB

MN}

+FKL ∧ HM{−YA
IMCKLI − YA L

BTB K
M − YA IKLZIM}

+GB ∧ HJ{−YA
IJϑI

B − YA I
BZIJ}

+F I ∧ KJKL{−YA I
BYB JKL + 3YA MJKXIL

M}

+FK ∧ KJ
D{YA I

BWB
I
KJ

D} = 0 , (2.67)

where

WB
I
KJ

D ≡ ϑK
CfBC

DδJ
I + XKJ

IδB
D − YB J

DδK
I , (2.68)

as in d = 4.

Each term in braces is linear (or quadratic) in Y -tensors and vanishes identically upon

use of the 5 constraints QI
JK , QIJ

K , QA I , QI JKL, QIJ
A. Furthermore, the index structure
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of the products of field strengths which multiply the 5 expressions in braces coincides with

that of the duals of those 5 constraints. Actually, each of those terms corresponds to one

of the identities in eq. (1.10), and we can rewrite the above expression in the form

F I ∧ KJK

{
YA

LM ∂QI
JK

∂ZLM
+ YA L

B ∂QI
JK

∂ϑL
B

}

+F IJ ∧ HK

{
YA

LM ∂QIJ
K

∂ZLM
+ YA L

B ∂QIJ
K

∂ϑL
B

+ YA LMN
∂QIJ

K

∂CLMN

}

+GB ∧ HI

{
YA

JK ∂QB I

∂ZJK
+ YA J

C ∂QB I

∂ϑJ
C

}

+F I ∧ KJKL

{
YA M

B ∂QI JKL

∂ϑM
B

+ 3YA MNP
∂QI JKL

∂CMNP

}

+F I ∧ KJ
B

{
YA K

C ∂QIJ
B

∂ϑK
C

}
= 0 . (2.69)

The scheme explained in the introduction leads us to assume the existence

of five 5-forms EI
JK , EIJ

K , EA I , E
I JKL, EIJ

A dual to the 5 constraints QI
JK ,

QIJ
K , QA I , QI JKL, QIJ

A so

∆KIJ ≡ +2XK[I
LEK

J ]L − CKL[IEJ ]
KL − ϑ[I|

AEA |J ] , (2.70)

∆KB
I ≡ WB

I
KJ

DEKJ
D − ZIJEB J − TB K

JEJ
IK − YB

JKEI
JK

−YB JKMEI JKM , (2.71)

∆KIJK ≡ 3XLM
(I|EL |JK)M + ZL(IEL

JK) . (2.72)

Each of these expressions is of the form ∆K♯ =
∑

♭ E♭∂Q♭/∂c♯.

With the determination of the 5-form field strengths K we have completed the construc-

tion of the 5-dimensional tensor hierarchy. The gauge transformations of all the potentials

can be obtained by constructing the most general gauge transformations under which all

the field strengths transform gauge-covariantly. We will not proceed to determine these

gauge transformations as they are in principle determined by the Bianchi identities.

2.2.5 Gauge-invariant action for the 1- and 2-forms

The gauge-invariant action for the 1- and 2-forms is essentially the one given in ref. [15],

with the E6 tensors ZIJ , CIJK replaced by arbitrary tensors satisfying the five algebraic

constraints, giving:

S =

∫ {
⋆R +

1

2
gxy(φ)Dφx ∧ ⋆Dφy −

1

2
aIJ(φ)F I ∧ ⋆F J − ⋆V (φ)

−ZIJBI ∧

[
HJ −

1

2
DBJ

]
+

1

3
CIJK

[
AI ∧ dAJK +

3

4
XLM

IAJLM ∧ dAK

+
3

20
XLM

IXNP
JALMNPK

]}
, (2.73)

where the scalar potential V (φ) may contain more terms than the one in eq. (2.1). The

new terms must depend on the deformation tensors in such a way that the potential of the

ungauged theory is recovered when they are set to zero.
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A general variation of the above action can be written in the form9

δS≡

∫ {
δgµν δS

δgµν
− δφx ⋆

δS

δφx
− δAI∧⋆

δ̃S

δAI
− (δBI − CIJKAJ∧δAK)∧⋆

δS

δBI

}
, (2.74)

where the equations of motion are10

δS

δgµν
= ⋆

{
Gµν +

1

2
gxy

[
Dµφx

Dνφ
y −

1

2
gµνDρφ

x
D

ρφy

]

−
1

2
aIJ

[
F I

µ
ρF J

νρ −
1

4
gµνF I ρσF J

ρσ

]
+

1

2
gµνV

}
, (2.76)

⋆
δS

δφx
= gxyD ⋆ Dφy +

1

2
∂xaIJF I ∧ ⋆F J + ⋆∂xV , (2.77)

⋆
δ̃S

δAI
= D(aIJ ⋆ F J) − CIJKF JK − ⋆ϑI

AjA , (2.78)

⋆
δS

δBI
= −ZIJ(aJK ⋆ FK − HJ) , (2.79)

in which we have defined the 1-form currents

jA ≡ kA xDφx . (2.80)

Now, we can substitute in the general variation of the action the gauge transformations

of the fields

δΛφx = ΛIϑI
AkA

x , (2.81)

δΛAI = −DΛI − ZIJΛJ , (2.82)

δΛBI = DΛI + 2CIJK

(
ΛJFK +

1

2
AJ ∧ δΛAK

)
. (2.83)

Checking invariance of the action under the gauge transformations generated by 0- and

1-form parameters amounts to checking the following two Noether identities:

D ⋆
δ̃S

δAI
+ 2CIJKF J ∧ ⋆

δS

δBK
+ ϑI

AkA
x ⋆

δS

δφx
= 0 , (2.84)

D ⋆
δS

δBI
+ ZIJ ⋆

δ̃S

δAJ
= 0 . (2.85)

The second identity is easily seen to be satisfied. The first identity can also be shown

to be satisfied upon use of the Killing property of ϑI
AkA

x, the property

ϑI
AkAaJK = −2XI(J

LaK)L , (2.86)

9The tilde in the first variation w.r.t. the 1-forms AI defines a modified first variation which has a simpler

form than the total first variation which would be, as usual, the sum of all the terms proportional to δAI

and contains terms proportional to the equations of motion of other fields. We will use similar simplified

first variations in the 6-dimensional action.
10Explicitly, we have

D ⋆ Dφ
x = d ⋆ Dφ

x + Γyz
x
Dφ

y
∧ ⋆Dφ

z + ϑI
A

∂ykA
x
A

I
∧ ⋆Dφ

y
. (2.75)
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of the kinetic matrix, the condition

ϑI
AkAV = 0 , (2.87)

of the scalar potential and the constraint QI JKL = 0. Observe that these are the same

conditions required by global invariance but projected with the embedding tensor, which

means they are weaker conditions.

We can now relate the equations of motion derived from this action and the tensor

hierarchy’s Bianchi identities via the duality relations

aIJ ⋆ F J = HI , (2.88)

⋆jA = GA , (2.89)

⋆
∂V

∂c♯
= K♯ . (2.90)

With these duality relations, the 1-form equations of motion become the Bianchi identi-

ties for the hierarchy’s 3-form field strengths HI . The projected scalar equations of motion

kA
x ⋆ δS

δφx become the Bianchi identity of the hierarchy’s 4-form field strengths GA. In order

to show this one must use the Killing property of the kA
x, eq. (2.14) for the kinetic matrix,

and the following expression for kAV

kAV =
∑

♯

YA
♯ ∂V

∂c♯
. (2.91)

Now that we have completed the construction of the 5-dimensional tensor hierarchy

and provided an interpretation of the various potentials we summarize these results in

table 1. We will explain the meaning of the table by discussing in detail the case of the

2-forms. The other forms then go analogously.

We have seen 2-forms appearing in the field strengths of the 1-forms. These are un-

gauged 1-forms because the field strengths of the gauged 1-forms do not contain any 2-

forms. These 2-forms are ZIJBJ . Their gauge transformations are of the form ZIJδBJ =

ZIJ
DΛJ plus terms involving the 0-form gauge transformation parameter ΛI , but not the

2-form gauge transformation parameter ΛA. Therefore, all the gauge transformations that

the ZIJBJ have are massless gauge transformations. This is indicated in table 1 by the term

“massless” in the column called “gauge transformations”. Since the ZIJBJ 2-forms appear

in the field strength of the ungauged 1-forms they form Stückelberg pairs with these un-

gauged 1-forms. This is indicated in table 1 by “ungauged AI” in the column “Stückelberg

pair with”. It is not possible to say, unless we explicitly know all the components of ZIJ ex-

actly which 2-form BI forms a Stückelberg pair with which 1-form AI . Further, we also indi-

cated that the 2-forms ZIJBJ whose field strengths are ZIJHJ are dual to ZIJaJKFK and

that 2-forms with these gauge transformation properties can only exist whenever ZIJ 6= 0.

Besides the 2-forms ZIJBJ there are also those which do not appear in the field strengths of

the 1-forms. Such 2-forms fall into two categories depending on their gauge transformation

properties. The first possibility is that their field strengths contain Stückelberg couplings

to 3-forms. These exist for those I for which the Stückelberg coupling tensor ϑI
A 6= 0 and
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they will have massive gauge transformations.These 2-forms cannot also belong the ZIJBJ

type discussed earlier. Finally it can also happen that there are I values for which the

2-forms are not forming any Stückelberg pair with either 1-forms or 3-forms. Such 2-forms

occur for example in the theory in which there is no embedding tensor nor the Stückelberg

tensor Z. More generally they can occur in the gauged theory but only for those I for

which ϑI
A = ZIJ = 0. The other entries of table 1 should be read in an analogous fashion.

The 1-forms have been left out from the table since they behave the same in any

tensor hierarchy in any dimension. There are always three types: 1). gauged 1-forms

which always have massless gauge transformations and exist for all those A for which

ϑI
A 6= 0, 2). ungauged 1-forms with massive gauge transformations which exist for all

those I for which ZIJ 6= 0 and 3). ungauged 1-forms with massless gauge transformations

which exist for all those I for which ϑI
A = ZIJ = 0.

We end the discussion of the 5-dimensional tensor hierarchy with some comments

about possible redundancy of potentials. Potentials that have massive gauge transforma-

tions can be totally gauged away, but which particular potentials have a massive gauge

transformation (i.e. which p-form potentials are Stückelberg fields for a (p + 1)-form

potential) depends on the Stückelberg tensors occurring in their field strengths, as shown

in table 1. Using a massive gauge transformation with a p-form (local) parameter to

eliminate a p-form Stückelberg potential partially fixes the standard (massless) gauge

transformations of the associated (p + 1)-form potentials, which become massive. The

top-forms are special because they have massive gauge transformations but they are not

Stückelberg fields for any higher-rank potential.

For the p-forms with p = 1, 2, 3 this would lead to a (partial) gauge fixing of the 2-, 3-

and 4-form gauge transformations. When this is done one can for example eliminate some of

the 3-forms CA for certain values of A. In the case of the 4-forms it can happen, depending

on the details, that an entire form D♯ can be gauged away. The 4-form massive gauge

transformations are of the form δD♯ = −W♯
♭Λ♭ where Λ♭ is the 5-form gauge transformation

parameter, δE♭ = DΛ♭. The massive gauge transformations of the 4-forms δD♯ = −W♯
♭Λ♭

can sometimes be used to eliminate entirely some of the 4-forms D♯. This happens for

example in gauged maximal supergravity where there is only one deformation tensor, the

embedding tensor, and hence there is only one 4-form. Similar statements apply to the

5-forms E♭ that always come contracted with W♯
♭ and are thus determined up to massive

gauge transformations of the type δE♭ = Σ♭ with W♯
♭Σ♭ = 0.

3 The d = 6 general tensor hierarchy

3.1 d = 6 bosonic field theories

In d = 6 dimensions we can have, apart from a spacetime metric and scalars φx, n1 1-

forms Ai and n2 electric 2-forms BΛ. The 1-forms Ai are dual to 3-forms Ci and the

electric 2-forms BΛ are dual to magnetic 2-forms BΛ (we will study their definitions later).

Furthermore, in d = 6 dimensions we can have real (anti-) self-dual 3-forms and, therefore,

we can constrain the 2-forms to have (anti-) self-dual 3-form field strengths.

We will write down an action ignoring momentarily the (anti-) self-duality constraint

and impose it on the equations of motion derived from that action, as it was done in
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Potential Gauge Interpretation Stückelberg Existence

transformation (field strength dual to) pair with

BI massive aIJF J ϑI
ACA ∀I :ϑI

A 6=0

ZIJBJ massless ZIJaJKFK ungauged AI ∀I : ZIJ 6=0

BI massless aIJF J none ∀I : ϑI
A =ZIJ =0

CA massive
current jA of

YA
♯D♯ ∀A : YA

♯ 6=0
symmetry broken byV

ϑI
ACA massless

current jA of
BI ∀I : ϑI

A 6=0
gauged symmetry

CA massless
current jA of

none ∀A :YA
♯ =ϑI

A =0
global symmetry

D♯ massive ∂V/∂c♯ W♯
♭E♭ ∀♯ : W♯

♭ 6=0

YA
♯D♯ massless YA

♯∂V/∂c♯ CA ∀A : YA
♯ 6=0

D♯ massless ∂V/∂c♯ none ∀♯ : W♯
♭ =YA

♯ =0

W♯
♭E♭ massless enforces constraints D♯ ∀♯ : W♯

♭ 6=0

Table 1. All the p ≥ 2 forms of the 5-dimensional tensor hierarchy, their Stückelberg properties

and physical interpretation.

N = 2B, d = 10 supergravity in refs. [18, 19]. This can only be done consistently if the

field strengths and action are such that the Bianchi identities transform into the equations

of motion and viceversa under electric-magnetic duality transformations of the 2-forms. In

particular, if the action has Chern-Simons terms of the form H ∧ F ∧ A which give rise to

terms proportional to F ∧ F in the equations of motion of the 2-forms, the field strengths

H must necessarily have terms of the form F ∧ A.

Taking into account, thus, the possibility of having (anti-) self-dual 2-forms, the most

general action with (ungauged and massless) Abelian gauge-invariance, with no more than

two derivatives that we can write for scalars, vectors and (electric) 2-forms is, in differential

form language,11

S =

∫ {
− ⋆ R +

1

2
gxy(φ)dφx ∧ ⋆dφy −

1

2
aij(φ)F i ∧ ⋆F j

+
1

2
bΛΣ(φ)HΛ∧⋆HΣ+

1

2
cΛΣ(φ)HΛ∧HΣ+⋆V (φ)+εdΛ ijH

Λ∧F i ∧ Aj

}
. (3.1)

In this expression, F i and HΛ are the 2- and 3-form field strengths, defined by

F i ≡ dAi , (3.2)

HΛ ≡ dBΛ + dΛ
ijA

i ∧ dAj , (3.3)

invariant under the Abelian gauge transformations

δAi = −dΛi , (3.4)

δBΛ = dΛΛ + dΛ
ijΛ

idAj . (3.5)

11See appendix A.
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The scalar-dependent kinetic matrices gxy(φ), bΛΣ(φ), aij(φ) are symmetric. The first

two of them are positive-definite and the third is negative-definite. The tensor cΛΣ(φ) is

antisymmetric. The constant tensors dΛ ij and dΛ
ij have the symmetries12

dΛ ij = dΛ ji , dΛ
ij = dΛ

ji , (3.6)

ans satisfy the constraint

dΛ i(jd
Λ

kl) = 0 , (3.7)

for the last term in the action to be gauge-invariant. We will later choose the arbitrary

constant ε to have simple duality rules for the 2-forms.

If we vary the 1-forms and 2-forms in the action, we get

δS =

∫ {
−δAi ∧ ⋆

δ̃S

δAi
− (δBΛ + dΛ

ijA
i ∧ δAj) ∧ ⋆

δS

δBΛ

}
, (3.8)

where

⋆
δ̃S

δAi
= d

{
aij ⋆ F j − 2dΛ

ijA
j ∧ [JΛ + εdΛ klA

k ∧ dAl]

−2εdΛ ijH
Λ ∧ Aj −

2

3
εdΛ ijd

Λ
klA

jk ∧ dAl

}
, (3.9)

⋆
δS

δBΛ
= d{JΛ + εdΛ ijA

i ∧ dAj} , (3.10)

where we have defined

JΛ ≡ bΛΣ ⋆ HΣ + cΛΣHΣ , (3.11)

and where we have used the Bianchi identities and the property eq. (3.7) in order to write

the equations of motion of the vector fields as total derivatives.

3.1.1 The magnetic 2-forms BΛ

The equations of motion of the 2-forms BΛ suggest the definition of the magnetic 2-forms

BΛ through

dBΛ ≡ JΛ + εdΛ ijA
i ∧ dAj . (3.12)

Since JΛ is gauge-invariant, we define the dual 3-form field strengths by

HΛ ≡ JΛ = dBΛ − εdΛ ijA
i ∧ dAj . (3.13)

We set ε = −1 to make the magnetic and electric 3-form field strengths as similar as

possible. Thus, we can replace the equations of motion of the electric 2-forms, via the

above definition of the magnetic field strengths, by a Bianchi identity.

12The Chern-Simons term containing dΛ ij in the Lagrangian is clearly symmetric in ij up to total

derivatives. The terms containing dΛ
ij , which appear in the field strengths HΛ are symmetric up to a field

redefinition of BΛ.
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In d = 6 dimensions it is possible to constrain the 2-forms to have self- or anti-self-dual

field strengths. We can write these constraints in the form

ζΛΩ(HΩ − ζΩΣJΣ) = 0 , (3.14)

where ζΛΣ = ζΛΣ is a diagonal matrix whose diagonal components can only be +1 for

self-dual 3-form field strengths, −1 for anti-self-dual 3-form field strengths or 0 for uncon-

strained 3-form field strengths. The (anti-)self-duality constraints will be consistent if the

Bianchi identity for HΛ becomes the equation of motion of BΛ upon their use. The Bianchi

identities and the equations of motion are

dHΛ = dΛ
ijF

i ∧ F j , (3.15)

dJΛ = dΛ ijF
i ∧ F j . (3.16)

By hitting eq. (3.14) with an exterior derivative we find that the tensors dΛ
ij , and dΛ ij

must satisfy the constraint

ζΩΛ(dΛ
ij − ζΛΣdΣ ij) = 0 , (3.17)

for consistency.

3.1.2 The 3-forms Ci

The form of the equations of motion of the 1-forms also suggests the definition

dCi ≡ aij ⋆ F j − 2dΛ
ijA

j ∧ [JΛ − dΛ klA
k ∧ dAl] + 2dΛ ijH

Λ ∧ Aj

+
2

3
dΛ ijd

Λ
klA

jk ∧ dAl , (3.18)

or, using the magnetic 2-forms and the constraint eq. (3.7)

dCi = aij ⋆ F j − 2dM
ij

[
Aj ∧ dBM +

1

3
dM klA

jk ∧ dAl

]
, (3.19)

where we have defined the 2n2-component vectors

(BM ) ≡




BΛ

BΛ


 , (dM

ij) ≡

(
dΛ

ij

dΛ ij

)
, (dM ij) ≡

(
dΛ ij , dΛ

ij

)
. (3.20)

The gauge-invariant 4-form field strengths Gi can be defined as

Gi ≡ dCi + 2dM ij

[
Aj ∧ dBM +

1

3
dM

klA
jk ∧ dAl

]
, (3.21)

which is related to the 2-form field strengths by the duality relation

Gi = aij ⋆ F j . (3.22)

The 3-forms Ci can be redefined in order to make contact with the 3-forms that appear

naturally in the tensor hierarchy. The redefinition is

Cold
i −→ Cnew

i + 2dM ijB
M ∧ Aj , (3.23)

– 20 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
9

so that

Gi = dCnew
i + 2dM

ij

[
dAj ∧ BM +

1

3
dM klA

jk ∧ dAl

]
. (3.24)

The Bianchi identity satisfied by Gi is

dGi = 2dM
ijF

j ∧ HM . (3.25)

In order to derive this it is useful to note that eq. (3.7) can also be written as

dM i(jd
M

kl) = 0 . (3.26)

3.1.3 Symmetries

Let us momentarily set the d- and ζ-tensors to zero and consider the symmetries of the

system of equations of motion and Bianchi identities of the 2-forms:

dHΛ = 0 , (3.27)

dJΛ = 0 . (3.28)

This system is formally invariant under the GL(2n2, R) transformations

JM ′ = MN
MJN , (JM ) ≡




HΛ

JΛ


 . (3.29)

These transformations must be consistent with the definition of JΛ in terms of HΛ. Writing

(MN
M ) ≡

(
AΣ

Λ BΣΛ

CΣΛ DΣ
Λ

)
, (3.30)

we find that, for consistency, the symmetric and antisymmetric kinetic matrices bΛΣ, cΛΣ

must transform according to

f ′ = (C + Df)(A + Bf)−1 , (3.31)

fT ′ = −(C − DfT )(A − BfT )−1 , (3.32)

where we have defined the matrix

fΛΣ = bΛΣ + cΛΣ . (3.33)

Consistency between the two transformation rules implies

AT C + CT A = 0 , BT D + DT B = 0 , AT D + CT B = ξIn2×n2 . (3.34)

The constant ξ has to be +1 in order to preserve the energy-momentum tensor. The

same conditions can be derived from the requirement that the matrix MN
M preserves the

off-diagonal metric (ηMN ) =

(
0 In2×n2

In2×n2 0

)
, that is

MM
P ηPQMN

Q = ηMN . (3.35)
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Thus, the system of 2-form equations of motion and Bianchi identities is invariant

under symmetries that can be embedded into SO(n2, n2). The off-diagonal metric η can be

used to raise and lower M,N = 1, · · · , 2n2 indices, in agreement with the definitions (3.20)

of the vectors dM
ij and dM ij .

Only those transformations of the matrices bΛΣ and cΛΣ that can be compensated

by a reparametrization of the scalar manifold leaving invariant the target-space metric

gxy(φ) will be symmetries of the theory. Furthermore, the reparametrizations of the scalar

manifold must induce linear transformations Mi
j of the 1-forms’ kinetic matrix aij(φ) that

can be compensated by the inverse linear transformation acting on the 1-forms.

Defining the SO(n2, n2) generators by

MM
N ∼ δM

N + αATA M
N , (3.36)

we find that the above constraint implies

TA (MN) ≡ TA (M
P ηN)P = 0 . (3.37)

As discussed above, the same transformations must also act linearly on the 1-forms, and,

therefore, we can define the generators in the corresponding representation:

Mi
j ∼ δi

j + αATA i
j . (3.38)

In both representations, the generators TA satisfy the same Lie algebra

[TA, TB ] = −fAB
CTC . (3.39)

Since (part of) the symmetry group can act trivially on either vectors or 2-forms we allow

some of the generators TA to be zero. It is for example possible that some symmetry gener-

ators act trivially on the 2-forms while they transform some of the scalars and vectors. In

this case we have vanishing generators TAM
N and non-vanishing TAi

j . Still both (formally)

satisfy the above algebra.

The ζ-tensor can be redefined in an SO(n2, n2)-covariant way:

(ζM
N ) ≡

(
0 ζΛΣ

ζΛΣ 0

)
, ζΛΣ = ζΛΣ , (3.40)

so the (anti-) self-duality constraint takes the form

ζM
N (JN − ζN

P JP ) = 0 . (3.41)

3.2 Gaugings and massive deformations

In general the above theory will have a group of global symmetries G with constant pa-

rameters αA. As discussed in the previous section, infinitesimally, these global symmetries

act on the scalars φx, 1-forms Ai and electric and magnetic 2-forms BM as

δαφx = αAkA
x(φ) , (3.42)

δαAi = αATA j
iAj , (3.43)

δαBM = αATA N
MBN , (3.44)
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where the matrices TA M
N are generators of SO(n2, n2), i.e. they satisfy eq. (3.37), and the

kA
x(φ) are Killing vectors of the metric gxy(φ). Some of the matrices and Killing vectors

may be identically zero. They satisfy the algebras eq. (3.39) and [kA, kB ] = −fAB
CkC .

These transformations will be global symmetries of the theory constructed in the pre-

vious section if the following five conditions are met:

1. The vectors kA
x(φ) are Killing vectors of the metric gxy(φ) of the scalar manifold.

2. The kinetic matrices aij , fΛΣ ≡ bΛΣ + cΛΣ satisfy the conditions

£Aaij = −2TA (i
kaj)k , (3.45)

£AfΛΣ = −TA ΛΣ + 2TA (Λ
ΩfΣ)Ω − TA

ΩΓfΩΛfΓΣ , (3.46)

where £A denotes the Lie derivative along the vector kA and the matrices TA are

different components of some of the generators of SO(n2, n2) in the fundamental

representation

MN
M ∼ I2n2×2n2 + αATA N

M = I2n2×2n2 + αA




TAΣ
Λ TA

ΣΛ

TAΣΛ TA
Σ

Λ


 . (3.47)

3. The deformation tensor dM ij is invariant

δAdM ij ≡ YA Mij = −TA M
NdN ij − 2TA (i

kdM j)k = 0 . (3.48)

4. The scalar potential is invariant

£AV = kAV = 0 . (3.49)

5. The ζ-tensors is invariant

δAζM
N = TA P

MζP
N − TA N

P ζM
P = 0 . (3.50)

As we did in the 5-dimensional case, we will relax some of these conditions to construct

a gauged theory. In the next section when we construct the tensor hierarchy and the action

we only require invariance of dM ij under that subgroup of G that is gauged. Taking the

limit in which all deformation tensors but dM ij vanish we recover the results of this section

and in particular the action will generically only be invariant under a subgroup of G. The

ζ-tensor on the other hand is not a deformation tensor and we therefore have the condition

that it must be an invariant tensor of the symmetry group.

To gauge the theory we introduce, as in the 5-dimensional case, the embedding tensor

ϑi
A, subject to the quadratic constraint (eq. (2.20) with the indices I, J,K replaced by

i, j, k) which reflects its gauge-invariance. Following the same steps as in the 5-dimensional

case, we introduce the gauge-covariant derivative of the scalars eq. (2.19) and, from the

Bianchi identity associated to it, eq. (2.24), we arrive at the definition of the 2-form field
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strength F i given in eq. (2.28) up to the undetermined term ∆F i subject to the condition

eq. (2.29). Gauge-covariance of F i implies the gauge transformation eq. (2.30) for ∆F i,

which we rewrite here for convenience:

δΛ∆F i = −D∆Ai + 2X(jk)
i

[
ΛjF k +

1

2
Aj ∧ δΛAk

]
. (3.51)

In this case, in order to satisfy the constraint ϑi
A∆F i = ϑi

A∆Ai = 0 it is natural to

introduce a matrix ZiM satisfying

QAM ≡ ϑi
AZiM = 0 , (3.52)

and define

∆F i ≡ ZiMBM , ∆Ai ≡ −ZiMΛM , (3.53)

where ΛM is the 1-form gauge parameter under which the 2-forms BM must transform.

Then, the gauge transformation of ∆F i implies

ZiMδΛBM = ZiM
DΛM + 2X(jk)

i

[
ΛjF k +

1

2
Aj ∧ δΛAk

]
. (3.54)

This solution will only work if X(jk)
i ∼ ZiMOM jk for some tensor OM jk symmetric in jk.

It is natural to identify this tensor with the tensor dM jk that we know can be introduced

in the physical theory so that

δΛBM = DΛM + 2dM jk

[
ΛjF k +

1

2
Aj ∧ δΛAk

]
+ ∆BM , (3.55)

in which ZiM∆BM = 0. With this choice for we find agreement with what was found in

the previous subsection obtained by setting ϑi
A = ZiM = 0.

We impose the constraint

Qjk
i ≡ X(jk)

i − ZiMdM jk = 0 , (3.56)

where we have chosen the normalization of dM jk to recover the expression we got in the

previous section. We thus find

F i = dAi +
1

2
Xjk

iAjk + ZiMBM , (3.57)

δΛAi = −DΛi − ZiMΛM , (3.58)

δΛBM = DΛM + 2dM kl

(
ΛkF l +

1

2
Ak ∧ δΛAl

)
+ ∆BM , ZiM∆BM = 0 , (3.59)

where the possible additional term ∆BM will be determined by the requirement of gauge-

covariance of the 3-form field strength HM .

We must require the tensors ZiM and dM ij to be gauge-invariant, which leads to

the constraints

Qi
jM ≡ −δiZ

jM = −Xik
jZkM − XiN

MZjN = 0 , (3.60)

Qi M jk ≡ −δidM jk = Xi M
NdN jk + 2Xi (j|

ldM |k)l = 0 . (3.61)

This last constraint is clearly weaker than the global invariance constraint YA Mij = 0 in

eq. (3.48).
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3.2.1 The 3-form field strengths HM

The covariant derivative of the 2-form field strengths F i, after use of the generalized Jacobi

identities13 is

DF i = ZiM

{
DBM + dM jk

[
Aj ∧ dAk +

1

3
Xlm

kAjlm

]}
, (3.62)

which leads us to define the 3-form field strength

DF i = ZiMHM , (3.63)

HM ≡ DBM + dM jk

[
Aj ∧ dAk +

1

3
Xlm

kAjlm

]
+ ∆HM , (3.64)

ZiM∆HM = 0 , (3.65)

where ∆HM will be determined, together with ∆BM by using gauge-covariance of HM ,

which is guaranteed by the formalism. To proceed with constructing the hierarchy we do

not need the explicit form of the gauge transformations ∆BM . Just as in the 5-dimensional

case we can continue with constructing gauge-covariant field strengths by computing the

Bianchi identities. The form of ∆HM will be a contraction of some invariant tensor(s),

that are annihilated by ZiM , with some 3-forms. We will determine ∆HM simultaneously

with the 4-form field strengths Gi.

3.2.2 The 4-form field strengths Gi

The Bianchi identity of HM takes the form

DHM = dM ijF
ij + D∆HM

+ZM i
N

{(
F i−

1

2
ZiP BP

)
∧BN +

1

3
dN jkA

ij∧dAk+
1

12
Xjk

ndN lnAijkl

}
, (3.66)

where we have defined the tensor

ZM i
N ≡ −Xi M

N − 2dM ijZ
jN , (3.67)

which is annihilated by ZjM , i.e. ZjMZM i
N = 0 by virtue of eqs. (3.52), (3.56) and (3.60).

The simplest Ansatz we can make is to assume that ∆HM = ZM i
NCN

i for some 3-

forms CN
i. However, in d = 6 dimensions the 3-forms of a physical theory are dual to the

1-forms, and, therefore, as we have shown in the case that ϑi
A = ZiM = 0, we can only

have 3-forms Ci. This means that we must define a new14 invariant tensor ZM
i such that

∆HM = ZM
iCi , ZjMZM

i = 0 . (3.68)

13In the 6-dimensional theory the generalized Jacobi identity reads X[jk
mXl]m

i = 2
3
Zi

NX[jk
mdN

l]m.
14 In principle ZM

i and Zi
M are unrelated, but we are going to see that we can relate these two tensors,

though. This is not just an economical possibility, but reflects the fact that if a p-form has a stückelberg

coupling to a (p + 1)-form, then their duals, which will be, respectively, (p̃ + 1)- and p̃-forms (with p̃ =

d − p − 2), will also have Stückelberg couplings with the same parameters and reversed roles: the p̃-form,

dual of the (p + 1)-form, will be the Stückelberg field of the (p̃ + 1)-form, dual of the p-form.
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In order to make contact with the field strength Gi in eq. (3.23) of the theory obtained

for ϑi
A = ZiM = 0 we must require

ZM i
N = 2ZM

jdN
ji , (3.69)

so that the Bianchi identity will take the form

DHM = dM ijF
i ∧ F j + ZM

iGi ,

Gi = DCi+2dN
ip

[(
F p−

1

2
ZpMBM

)
∧ BN +

1

3
dN jkA

pj ∧ dAk+
1

12
Xjk

ndN lnApjkl

]

+∆Gi ,

ZM
i∆Gi = 0 . (3.70)

The requirement (3.69) leads to

Xi MN = −2(dM ijZ
j
N + dN ijZM

j) . (3.71)

The antisymmetry of Xi MN suggests15 to take

ZMi = −ZiM . (3.72)

Summarizing we have thus two new constraints:

QiMN ≡ Xi MN − 4Zj
[MdN ]ij = 0 , (3.73)

Qij ≡ ZiMZj
M = 0 , (3.74)

from which it follows that the tensor

CMNP ≡ dM ijZ
i
NZj

P , (3.75)

is totally symmetric.

The constraint Qij = 0 is similar to the constraint ϑM
AϑMB = 0 in 4 dimensions [11].

We will show the validity of this construction by proving the consistency of the resulting

tensor hierarchy.

3.2.3 The 5-form field strengths KA

If we take the covariant derivative of the Bianchi identity of HM we find

ZM
i[DGi − 2dN

ijF
j ∧ HN ] = 0 , (3.76)

from which it follows that the Bianchi identity of Gi must have the form

DGi = 2dN
ijF

j ∧ HN + ∆DGi , ZM
i∆DGi = 0 . (3.77)

15See footnote 14.
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A direct calculation using the above expression for Gi gives the result

DGi = 2dM
ijF

j ∧ HM + D∆Gi + ϑi
A

{
TA

MN

(
HM −

1

2
DBM

)
∧ BN

+TA k
p

[
(F k − ZkMBM ) ∧ Cp −

1

6
dM

jpdM lmAjkl ∧ dAm

+
1

30
Xlm

qdM
jqdM pnAjklmn

]}
, (3.78)

up to terms proportional to the constraint eq. (3.26) which, so far we had not needed.

The reason why we need to use it here is that the term dM i(jd
M

kl) is not annihilated by

ZiN and we cannot argue that it is proportional to ϑi
A times some new tensor. the only

consistent way forward is to use eq. (3.26).
Since ZiMϑi

A = 0, we can set ∆Gi = ϑi
ADA for some 4-forms DA and write the

Bianchi identity for the 4-form field strength Gi in the form

DGi = 2dM
ijF

j ∧ HM + ϑi
AKA , (3.79)

KA = DDA + TA
MN

(
HM −

1

2
DBM

)
∧ BN

+TA k
p

[
(F k − ZkMBM ) ∧ Cp−

1

6
dM

jpdM lmAjkl ∧ dAm+
1

30
Xlm

qdM
jqdM pnAjklmn

]

+∆KA , (3.80)

ϑi
A∆KA = 0 . (3.81)

3.2.4 The 6-form field strengths L

The covariant derivative of the Bianchi identity of Gi implies that the Bianchi identity for

the 5-form field strengths must be of the form

DKA = TA j
kF j ∧ Gk −

1

2
TA

MNHM ∧ HN + ∆DKA , ϑi
A∆DKA = 0 . (3.82)

It is useful to have some idea of what we can expect concerning DKA according to the

general formalism that we have introduced before.

As we have seen, 6-dimensional gauge theories are determined by three different de-

formation tensors ϑi
A, ZiM , dM ij satisfying the 5 constraints Q = 0:

QAM ≡ ϑi
AZiM , (3.83)

Qij ≡ ZiMZj
M , (3.84)

Qjk
i ≡ X(jk)

i − ZiMdM jk , (3.85)

Qi MN ≡ Xi MN − 4Zj
[MdN ]ij , (3.86)

Qijk l ≡ dM (ijd
M

k)l , (3.87)

plus the three constraints associated to the gauge-invariance of the deformation tensors:

Qji
A ≡ −δjϑi

A = −ϑj
BYB i

A = −ϑj
B(fBC

Aϑi
C − TB i

kϑk
A) , (3.88)

Qj
iM ≡ −δjZ

iM = −ϑj
AYA

iM = −ϑj
A(TA k

iZkM + TA N
MZiN ) , (3.89)

Qk M ij ≡ −δkdM ij = −ϑk
AYA M ij = ϑk

A(2TA (i|
ldM |j)l + TA M

NdN ij) . (3.90)
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We thus expect three 5-forms Ei
A, EiM , EM ij dual to the deformation tensors that

will appear in the field strength KA through the term

∆KA = YA i
BEi

B + YA
iMEiM + YA M ijE

M ij . (3.91)

The result of a direct calculation is

DKA = TA j
kF j ∧ Gk −

1

2
TA

MNHMN

+YA i
B

{
−F i ∧ DB +

1

30
TB k

ndN
jmdN lnAijkl ∧ dAm

+
1

80
TB k

pXlm
qdN

jqdN pnAijklmn

}

+YA
iM

{
(HM − DBM) ∧ Ci − BM ∧ (Gi − ϑi

BDB) −
1

2
Zj

MCij

+ dN
ijF

j ∧ BMN +
1

3
dN

ijZ
jP BMNP

}

+YA
M

ij

{
−F ij ∧ BM + ZiNF j ∧ BMN −

1

3
ZiNZjP BMNP

−
1

2
dM klA

ik∧dAjl−
2

15
Xkl

ndM nmAiklm∧dAj−
1

5
Xkl

jdM nmAikln∧dAm

−
1

18
Xkl

jXnp
qdM

mqA
iklmnp

}

+D∆KA . (3.92)

If we take ∆DKA to be

∆DKA = YA i
BLi

B + YA
iMLiM + YA M ijL

M ij , (3.93)

where Li
B , LiM , LM ij are the gauge-covariant field strengths of the 5-forms Ei

B, EiM and

EM ij , respectively, then we obtain the Bianchi identity for KA given in eq. (C.19) with

the 6-form field strengths Li
B , LiM , LM ij given in eqs. (C.13), (C.14) and (C.15).

In eqs. (C.13), (C.14) and (C.15) we have not specified in detail the Stückelberg cou-

plings to the 6-forms that we denoted by F♭. There are in total eight top-forms in 6-

dimensions corresponding to the eight constraints. These eight top-forms are determined

up to massive gauge transformations of the form δF♭ = Σ♭ such that W♯
♭Σ♭ = 0. This is

because all the top-forms only come contracted with W♯
♭. In particular theories it can hap-

pen that these massive gauge transformations enable one to complete gauge away certain

top-forms entirely. The massless gauge transformations of the top-forms contain the 5-form

gauge transformation parameter Λ♭, i.e. W♯
♭δF♭ = W♯

♭
DΛ♭. This parameter also shows up

in the gauge transformation of the 5-form potentials E♯ as δE♯ = −W♯
♭Λ♭. Depending

on the details of the theory these massive gauge transformation may allow one to entirely

gauge away certain 5-forms.
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3.2.5 Gauge-invariant action for the 1-, 2- and 3-forms

Our starting point to construct a 6-dimensional gauge-invariant action is16

S1 ≡

∫ {
1

2
gxy(φ)Dφx ∧ ⋆Dφy −

1

2
aij(φ)F i ∧ ⋆F j

+
1

2
bΛΣ(φ)HΛ ∧ ⋆HΣ +

1

2
cΛΣ(φ)HΛ ∧ HΣ + ⋆V (φ)

}
, (3.94)

where the covariant derivative and field strengths are those of the tensor hierarchy. This

means, in particular, that

DBΣ = dBΣ + Xi M
ΣAi ∧ BM , (3.95)

so the magnetic 2-forms BΣ occur in this action.

As a general rule, the gauge-invariant action will only differ from this one by

topological Chern-Simons-like terms. Furthermore, the equations of motion will just be

gauge-covariant generalizations of the ungauged ones, up to duality transformations. More

precisely, as a general rule, the equations of motion of the magnetic higher-rank form fields

(here the magnetic 2-forms BΣ and the 3-forms Ci) will just be duality relations, and the

equations of motion of the (electric) lower-rank potentials (here the 1-forms Ai and the

electric 2-forms BΣ) will be completely equivalent to the hierarchy’s Bianchi identities

after use of the duality relations.

Let us first consider all those which contain the 3-forms Ci. Taking into account that

we expect the equation of motion of Ci to be a duality relation for the 3-form field strengths,

a reasonable Ansatz for the terms that involve 3-forms is

S2 ≡

∫
ZiΣCi ∧

(
HΣ +

1

2
Zj

ΣCj

)
, (3.96)

since, if we only vary w.r.t. the 3-forms, we get

δ(S1 + S2) = −ZiMδCi ∧ [JM − HM ] , (3.97)

where JΛ is given in eq. (3.11) (but with the field strengths HΛ replaced by those of the

hierarchy) and the upper component of the doublet JM is defined to be JΣ ≡ HΣ.

Let us now consider the topological terms containing magnetic 2-forms BΛ. We expect

the equations of motion of the BΛ to give the duality relation between 2- and 4-form field

strengths (up to, possibly, other duality relations). If we only vary BΣ in S1 + S2 we find

the result

δ(S1 + S2) = δBΣ ∧
{
−ZiΣ[aij ⋆ F j − DCi] + Xi

ΣΩAi ∧ [JΩ + Zj
ΩCj]

}
, (3.98)

whose two terms have the form of incomplete duality relations, in agreement with our

prejudice. If we require that the next term we add to the action, S3, gives, upon variation

of BΣ only, the complete duality relations

δ(S1 + S2 + S3) = −δBΣ ∧
{
ZiΣ[aij ⋆ F j − Gi] + D(JΣ − HΣ)]

}
, (3.99)

16We do not consider the Einstein-Hilbert term as it plays no role in the discussion.
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we find that

S3 ≡

∫ {
BΣ ∧

{
ZiΣ

[
2dΩ ijf

j ∧ BΩ + gi +
1

2
dΩ

ijXkl
jAkl ∧ BΩ

]

+2dΣ
ijZ

jΩAi ∧ dBΩ+Xi
ΣΩAi ∧

[
−hΩ+Xj ΩΓAj ∧ BΓ+

1

2
Xj Ω

ΓAj ∧ BΓ

]}

+
1

3
dM

ijZ
iNZjPBMNP −

1

3
dΛ ijZ

i
ΣZj

ΩBΛΣΩ

}
, (3.100)

where f j, hΩ and gi are, respectively, the part of the field strengths F j , HΩ and Gi that

only depend on the 1-forms Ai, i.e.

f j ≡ dAj +
1

2
Xkl

jAkl , (3.101)

hM ≡ dM jmAj ∧ dAm +
1

3
dM jmXkl

mAjkl , (3.102)

gi ≡
2

3
dM

ijdM klA
jk ∧ dAl +

1

6
dM

ijdM klXmn
lAjkmn . (3.103)

Observe that S3 does not contain any 3-forms and, therefore, the variation of the action

w.r.t. the 3-forms, eq. (3.97), does not change when we add S3.

We next consider the variations w.r.t. the electric 2-forms BΣ. These should give the

equations of motion of the electric 2-forms up to duality relations. Adding

S4 ≡

∫ {
dΣ ijB

Σ ∧ f ij +
1

3
dΛ ijZ

i
ΣZj

ΩBΛΣΩ

+Xi ΣΩAi ∧ hΩ ∧ BΣ + 2dΣ ijZ
i
ΩAj ∧ dBΣ ∧ BΩ

+
1

2

(
dΣ ijZ

i
ΩXkl

j − Xk ΣΓXl
Γ

Ω

)
Akl ∧ BΣΩ

}
, (3.104)

we find that varying only w.r.t. BΣ gives

δ(S1 + S2 + S3 + S4) = −δBΣ ∧ {Zi
Σ[aij ⋆ F j − Gi] + D(JΣ − HΣ)} , (3.105)

which, upon duality relations gives the hierarchy’s Bianchi identity of the magnetic 3-form

field strengths HΣ. S4 does not contain any 3-forms or magnetic 2-forms and, therefore,

adding S4 does not change neither eq. (3.97) nor eq. (3.99).

Finally, let us consider the variation of S1 w.r.t. the 1-forms Ai only. We can write the

result in the form

δS1 = δAi ∧

{
− ⋆

δS

δAi
+ si

}
, (3.106)

where we have defined

⋆
δS

δAi
≡ D(aij ⋆ F j) − 2dM

ijF
j ∧ JM − ϑi

A ⋆ jA

+dM
ijA

j ∧
[
Zk

M (akl ⋆ F l − Gk) + D(JM − HM )
]

+

[
2dN ilB

N +
2

3
dN

ljdN kiA
jk

]
∧ Z lM [JM − HM ] , (3.107)
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and

si ≡ −dΣ ijZ
kΣAj ∧ Gk − (2dΣ ijF

j + dΩ
ijXk ΩΣAjk) ∧ HΣ

+[Xi M
ΣBM + dΣ

l[iXjk]
lAjk − dΩ

ijXk Ω
ΣAjk − 2dΣ

ij(F
j − dAj)] ∧ HΣ

−dΣ
ijdΣ klA

j ∧ F kl . (3.108)

While this definition is mainly based on intuition, we can check that the variations of

the pieces S2, S3 and S4 w.r.t. Ai only contribute to si: the variation of S2 w.r.t. Ai cancels

all the terms in si containing the 3-forms Ci; the variation of S3 w.r.t. Ai cancels all the

terms in si containing the magnetic 2-forms BΣ and the variation of S4 w.r.t. Ai cancels

all the terms in si containing the electric 2-forms BΣ, leaving unchanged what we have

defined as δS
δAi . Thus, we only need to see if there exists an S5 whose variation w.r.t. Ai

cancels the terms in si that only depend on the 1-forms Ai. In other words: we have to

determine the integrability of the terms in δAi ∧ si that only depend on 1-forms. This

highly non-trivial requirement is satisfied and S5 is given by

S5 =
1

4

[
dΣ ikd

Σ
jl − dΣ

ikdΣ jl

]
Aij ∧ dAkl

+Xij
p

[
2

15
dΣ kmdΣ

lp −
1

5
dΣ

kmdΣ lp

]
Aijkl ∧ dAm

+
1

9

[
dΣ ipd

Σ
jq +

1

2
dΣ

ipdΣ jq

]
Xkl

pXmn
qAijklmn . (3.109)

It is evident that this additional term does not modify the variations of the total action17

S ≡ S1 + · · · + S5 (3.110)

w.r.t. the 3- and 2-forms.

We, thus arrive at the following result:

δS =

∫ {
−δφx ⋆

δS

δφx
− δAi ∧ ⋆

δ̃S

δAi
− (δBM − dM

ijA
i ∧ δAj) ∧ ⋆

δS

δBM

−

[
δCi + 2dM ijB

M ∧ δAj +
2

3
dM

ijdM klA
jk ∧ δAl

]
∧

δS

δCi

}
, (3.111)

where

⋆
δS

δφx
= gxyD ⋆ Dφy +

1

2
∂xaijF

i ∧ ⋆F j −
1

2
HM ∧ ∂xJM − ⋆∂xV , (3.112)

δS

δCi
= ZiM(JM − HM ) , (3.113)

⋆
δS

δBM
= Zi

M (aij ⋆ F j − Gi) + D(JM − HM) , (3.114)

⋆
δ̃S

δAi
= D(aij ⋆ F j) − 2dM

ijF
j ∧ JM − ϑi

A ⋆ jA . (3.115)

17A similar action for the case of the maximal 6-dimensional supergravity theory was constructed in [16].
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We can now relate the equations of motion derived from this action and the tensor

hierarchy’s Bianchi identities via the duality relations

aij ⋆ F j = Gi , (3.116)

JM = HM , (3.117)

⋆jA = KA , (3.118)

⋆
∂V

∂c♯
= L♯ . (3.119)

With these duality relations, the 3-form and magnetic 2-form equations of motion are

automatically solved. The electric 2-form equations of motion become the hierarchy Bianchi

identity of the magnetic 2-forms. The 1-form equations of motion become the hierarchy’s

Bianchi identity of the 4-form field strengths Gi. The projected scalar equations of motion

kA
x ⋆ δS

δφx become the hierarchy’s Bianchi identity of the 5-form field strengths KA if we use

that kAaij = −2TA (i
kaj)k as well as HM ∧ kAJM = −TA M

NJM ∧ JN , the Killing property

of the kA
x and the fact that

kAV =
∑

♯

YA
♯ ∂V

∂c♯
. (3.120)

In section 3.1.1 we discussed the possibility of having (anti-)self dual 2-forms and we

found that this can be described by the tensor ζM
N . We could ask the same question now

in the context of a gauged theory with massive deformations. The (anti-)self duality can

again be written as

ζM
N (JN − ζN

P JP ) = 0 , (3.121)

where now JN contains the hierarchy field strengths HM . This condition must be consistent

with the equations of motion. After hitting the condition with a covariant derivative we

find the following consistency conditions: eq. (3.17) and

ζM
N (ZiN − ζN

P ZiP ) = 0 . (3.122)

The ζ-tensor is not predicted by the tensor hierarchy because it cannot distinguish

between (A)SD or non-(A)SD 2-forms. This concept only exists once equations of motion

are defined.

The gauge transformations that leave the action invariant can be written as

δAi = −DΛi − ZiMΛM , (3.123)

δBM = DΛM + 2dM ij

(
ΛiF j +

1

2
Ai ∧ δAj

)
− ZM

iΛi + ∆BM , (3.124)

δCi = DΛi + 2dN ijΛ
jJN − 2dN ijΛ

N ∧ F j

−2dN ijB
N ∧ δAj −

2

3
dN

ijdN klA
jk ∧ δAl . (3.125)
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Potential
Gauge Interpretation Stückelberg

Existence
transformation (field strength dual to) pair with

BM massive JM Zi
MCi ∀M :Zi

M 6=0

ZiMBM massless ZiMJM ungauged Ai ∀i :ZiM 6=0

BM massless JM none ∀M :ZiM =0

Ci massive aijF
j ϑi

ADA ∀i :ϑi
A 6=0

Zi
MCi massless Zi

MaijF
j BM ∀M :Zi

M 6=0

Ci massless aijF
j none ∀i :ϑi

A =Zi
M =0

DA massive
current jA of

YA
♯E♯ ∀A :YA

♯ 6=0
symmetry broken by V

ϑi
ADA massless

current jA of
Ci ∀i :ϑi

A 6=0
gauged symmetry

DA massless
current jA of

none ∀A :YA
♯ =ϑi

A =0
global symmetry

E♯ massive ∂V/∂c♯ W♯
♭F♭ ∀♯ :W♯

♭ 6=0

YA
♯E♯ massless YA

♯∂V/∂c♯ DA ∀A :YA
♯ 6=0

E♯ massless ∂V/∂c♯ none ∀♯ :W♯
♭ =YA

♯ =0

W♯
♭F♭ massless enforces constraints E♯ ∀♯ :W♯

♭ 6=0

Table 2. All the p ≥ 2 forms of the 6-dimensional tensor hierarchy, their Stückelberg properties

and physical interpretation.

To prove this we only need the following Noether identities associated to the invariance

under gauge transformations whose parameters are, respectively Λi, ΛM and Λi,

D ⋆
δ̃S

δAi
+ ϑi

AkA
x ⋆

δS

δφx
+ 2dM

ijF
j ∧ ⋆

δS

δBM
+ 2dM ijJ

M ∧
δS

δCj
= 0 , (3.126)

D ⋆
δS

δBM
− Zi

M ⋆
δ̃S

δAi
− 2dM ijF

i ∧
δS

δCj
= 0 , (3.127)

D
δS

δCi
− ZiM ⋆

δS

δBM
= 0 . (3.128)

We note that these gauge transformations are exactly those of the hierarchy except for the

3-form gauge transformation eq. (3.125) which can be written as

δCi = δhCi + 2dN ijΛ
j(JN − HN ) , (3.129)

in which δhCi (together with the 1-form δAi and 2-form gauge transformations δBM ) is

the gauge transformation under which HM transforms gauge-covariantly.

We end this section by giving an overview in table 2 of the 6-dimensional tensor

hierarchy and its physical interpretation. The way in which table 2 should be read is

entirely analogous to the 5-dimensional case discussed at the end of section 2.2.5.
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4 Discussion

Without making reference to any particular details of a 5- or 6-dimensional field theory

we have constructed the tensor hierarchies for such theories and the corresponding gauge-

invariant actions. We have found the dualities that relate these two structures.

Our results, together with those of refs. [11, 12] reveal a number of generic features

that must be common to all tensor hierarchies:

1. The field content of a particular tensor hierarchy provides an exhaustive list of all

possible potentials that one can introduce into a theory. The generic tensor hierar-

chies that we have constructed provide a minimal list. Depending on the existence

of additional theory-specific constraints (as in the N = 1, d = 4 supergravity case),

more potentials may be included.

2. In general, the deformation parameters of any field theory18 are of three differ-

ent kinds:

(a) The embedding tensor ϑ, which determines the gauge group and gauge couplings.

(b) The Stückelberg tensors Z that will determine the couplings between p-forms

and (p + 1)-forms and between their respective duals, the (p̃ + 1)- and p̃-forms

(with p̃ = d − p − 2).

(c) The Chern-Simons tensors d which determine the Chern-Simons terms in the

field strengths and action.

3. As explained in the introduction, the tensor hierarchy will contain one (d − 1)-form

potential (“de-form”) conjugate to each deformation parameter. In a democratic for-

mulation, the de-forms will enforce the constancy of the corresponding deformation

parameters. There may be additional top-forms associated to theory-specific con-

straints which cannot be studied in our generic models. It is unclear if there might be

additional top-forms whose gauge transformations are unconnected to the hierarchy.19

4. These deformation parameters will be subject to four generic kinds of constraints:

(a) Constraints that enforce the gauge-invariance of all deformation tensors:

δϑ = 0 , δZ = 0 , δd = 0. The first of these is the standard quadratic constraint

of the literature.

(b) Orthogonality constraints between the embedding tensor and the first

Stückelberg tensor ϑ · Z = 0 and between each Stückelberg tensor and the next

one Z · Z ′ = 0.

18In this list we are obviously leaving aside deformations such as the cosmological constant in non-

supersymmetric theories, which are unrelated to massive or massless gauge symmetries. These deformation

parameters do not couple to the hierarchy’s p-form potentials and, therefore, are unaccounted for by it.
19What is also still an open question is how to construct the tensor hierarchy of a theory without vectors

such as the type IIB supergravity theory.
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(c) Constraints that relate the X matrices with the Chern-Simons and Stückelberg

or embedding tensors: X ∼ Z · d = 0. The so-called linear or representation

constraint of the 4-dimensional theories can be viewed as an example of this

kind of constraints.

(d) Constraints between products of Chern-Simons tensors d · d = 0.

5. As explained in the introduction, the tensor hierarchy will contain a top-form

potential conjugate to each of the constraints satisfied by the deformation ten-

sors. In a democratic formulation, these top-form potentials will enforce the

corresponding constraints.

6. In d-dimensions, a gauge-invariant action for the physical theory can be constructed

using just the forms of rank 1 to [d/2] (i.e. 2 in d = 4, 5 and 3 in d = 6, 7 etc.). The

gauge transformations will be identical to those of the tensor hierarchy up to duality

relations. These duality relations are essential to relate the tensor hierarchy to the

physical theory and fix the way all the fields appear in the Lagrangian except for

those scalars that are not participating in isometry currents.

A tensor hierarchy together with a set of duality relations for its field strengths (a

structure called duality hierarchy in ref. [11]) is clearly a powerful tool to construct the

most general bosonic field theory in a particular dimension. This can then be used as a

starting point for the construction of more general supergravity theories by subsequently

supersymmetrizing the hierarchy.
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A Conventions and some formulae

We use mostly-minus signature both in 5- and 6-dimensions.

p-forms are normalized as follows

ω ≡
1

p!
ωµ1···µpdxµ1 ∧ · · · ∧ dxµp . (A.1)

The exterior product of a p-form ω and a q-form η is

ω ∧ η ≡
1

p!q!
ωµ1···µpην1···νqdxµ1 ∧ · · · ∧ dxµp ∧ dxν1 ∧ · · · ∧ dxνq , (A.2)
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so, its components are

(ω ∧ η)µ1···µp+q
=

(p + q)!

p!q!
ω[µ1···µp

ηµp+1···µp+q ] . (A.3)

The exterior derivative of a p-form ω is

dω ≡
1

p!
∂νωµ1···µpdxν ∧ dxµ1 ∧ · · · ∧ dxµp , (A.4)

so, its components are

(dω)µ1···µp+1 = (p + 1)∂[µ1
ωµ2···µp+1] . (A.5)

The d-dimensional volume form is, with mostly minus signature,

√
|g|ddx ≡

(−1)d−1

d!
√

|g|
ǫµ1···µd

dxµ1 ∧ · · · dxµd , (A.6)

where we have defined the completely antisymmetric symbol such that (in curved indices)

ǫ01···(d−1) = +1 , ǫ01···(d−1) = g ≡ detg = (−1)d−1|g| . (A.7)

The components of the Hodge dual of a p-form ω are defined by

(⋆ω)µ1···µd−p
≡

1

p!
√

|g|
ǫµ1···µd−pν1···νpω

ν1···νp , (A.8)

so

⋆ ω =
1

p!(d − p)!
√

|g|
ǫµ1···µd−pν1···νpω

ν1···νpdxµ1 ∧ · · · ∧ dxµd−p . (A.9)

Then, for p-forms ω in d dimensions, with mostly minus signature,

⋆2 ω = (−1)d−1+p(d−p) ω . (A.10)

It follows that for 3-forms H in 6 dimensions we have ⋆2 = +1 so that we can have real

self- and anti-self-dual 3-forms H±

H± ≡
1

2
(H ± ⋆H) , ⋆H± = ±H± . (A.11)

A d-form Ω in d-dimensions is always proportional to the volume form. We can

always write

Ω = K
√

|g| ddx ,

K =
1

d!
√

|g|
ǫµ1···µdΩµ1···µd

. (A.12)

Using this property, we find the following formulae in d dimensions

⋆ R = (−1)d−1R
√

|g|ddx , (A.13)

dφ ∧ ⋆dφ = (∂φ)2
√

|g| ddx , (A.14)

F ∧ ⋆F =
(−1)d−1

2
F 2
√

|g| ddx , (A.15)

H ∧ ⋆H =
1

3!
H2
√
|g| ddx , (A.16)

H ∧ ⋆H̃ =
1

3!
Hµνρ(⋆H̃)µνρ

√
|g| ddx . (A.17)
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B Summary of the general 5-dimensional tensor hierarchy

B.1 Deformation tensors and constraints

The deformation tensors of 5-dimensional field theories are ϑI
A, ZIJ = Z [IJ ] and CIJK =

C(IJK). They are subject to the constraints

QIJ
A = −ϑI

BYB J
A = −ϑI

B(ϑJ
CfBC

A − TB J
KϑK

A) , (B.1)

QI
JK = −ϑI

AYA
JK = 2ϑI

ATA L
[JZK]L , (B.2)

QIJKL = −ϑI
AYA JKL = 3ϑI

ATA (J
MCKL)M , (B.3)

which express the gauge-invariance of the deformation tensors and

QAI = ϑJ
AZJI , (B.4)

QJK
I = X(JK)

I − ZILCJKL . (B.5)

B.2 Field strengths and Bianchi identities

The tensor hierarchies of general 5-dimensional bosonic field theories have 1-forms AI , 2-

forms BI , 3-forms CA, 4-forms DI
B , DIJ , DIJK and 5-forms EIJ

A, EI
JK , EI JKL, EA I

and EIJ
K . The field strengths of the 1-, 2-, 3- and 4-form fields are given by

F I = dAI +
1

2
XJK

IAJK + ZIJBJ , (B.6)

HI = DBI + CIJKAJ ∧ dAK +
1

3
CIM [JXKL]

MAJKL + ϑI
ACA , (B.7)

GA = DCA + TA K
I

[(
FK −

1

2
ZKLBL

)
∧ BI +

1

3
CILMAKL ∧ dAM

+
1

12
CILP XMN

P AKLMN

]
+ YA

IJDIJ + YA I
BDB

I + YA IJKDIJK , (B.8)

KI
B = DDI

B + (F I − ZILBL) ∧ CB +
1

12
TB J

MCKMLAIJK ∧ dAL

+
1

60
TB J

NCKPNXLM
P AIJKLM + WB

I
KJ

DEKJ
D − ZIJEB J − TB K

JEJ
IK

−YB
JKEI

JK , (B.9)

KIJ = DDIJ −

[
H[I −

1

2
DB[I

]
∧ BJ ] + 2XK[I

LEK
J ]L − CKL[IE

KL
J ]

−ϑ[I|
AEA |J ] , (B.10)

KIJK = DDIJK +
1

3
A(I ∧ dAJK) +

1

4
XLM

(KAI|LM ∧ dA|J)

+
1

20
XLM

(JXNP
KAI)LMNP + 3XLM

(I|EL |JK)M + ZL(IEL
JK) , (B.11)

and are related by the Bianchi identities

DF I = ZIJHJ , (B.12)

DHI = CIJKF JK + ϑI
AGA , (B.13)

DGA = TA K
IFK ∧ HI + YA

IJKIJ + YA I
BKI

B + YA IJKKIJK . (B.14)
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B.3 Duality relations

HI = aIJ ⋆ F J , (B.15)

GA = ⋆jA , (B.16)

K♯ = ⋆
∂V

∂c♯
. (B.17)

C Summary of the general 6-dimensional tensor hierarchy

C.1 Deformation tensors and constraints

The deformation tensors of 6-dimensional field theories are ϑi
A, ZiM and dM ij = dM (ij).

They are subject to the constraints

Qji
A ≡ −ϑj

BYB i
A = −ϑj

B(fBC
Aϑi

C − TB i
kϑk

A) , (C.1)

Qj
iM ≡ −ϑj

AYA
iM = −ϑj

A(TA k
iZkM + TA N

MZiN) , (C.2)

Qk M ij ≡ −ϑk
AYA M ij = ϑk

A(2TA (i|
ldM |j)l + TA M

NdN ij) , (C.3)

associated to their gauge-invariance and, furthermore, to the constraints

QAM ≡ ϑi
AZiM , (C.4)

Qij ≡ ZiMZj
M , (C.5)

Qjk
i ≡ X(jk)

i − ZiMdM jk , (C.6)

Qi MN ≡ Xi MN − 4Zj
[MdN ]ij , (C.7)

Qijk l ≡ dM (ijd
M

k)l . (C.8)

C.2 Field strengths and Bianchi identities

The tensor hierarchies of general 6-dimensional bosonic field theories have 1-forms Ai, 2-

forms BM , 3-forms Ci, 4-forms DA, three types of 5-forms Ei
A, EiM , EM ij and eight types

of 6-forms (that we will only refer to collectively as F♭). The field strengths of the 1- to

5-form potentials are given by

F i = dAi +
1

2
Xjk

iAjk + ZiMBM , (C.9)

HM ≡ DBM + dM jk

[
Aj ∧ dAk +

1

3
Xlm

kAjlm

]
− Zi

MCi , (C.10)

Gi = DCi + 2dN
ip

[(
F p −

1

2
ZpMBM

)
∧ BN +

1

3
dN jkA

pj ∧ dAk +
1

12
Xjk

ndN lnApjkl

]

+ϑi
ADA , (C.11)

KA = DDA + TA
MN

(
HM −

1

2
DBM

)
∧ BN

+TA k
p

[(
F k − ZkMBM

)
∧ Cp−

1

6
dM

jpdM lmAjkl ∧ dAm

+
1

30
Xlm

qdM
jqdM pnAjklmn

]
+YA i

BEi
B+YA

iMEiM +YA M ijE
M ij , (C.12)
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Li
B = DEi

B−F i ∧ DB+
1

30
TB k

ndN
jmdN lnAijkl ∧ dAm

+
1

80
TB k

pXlm
qdN

jqdN pnAijklmn +
∂Q♭

∂ϑi
B

F♭ , (C.13)

LiM = DEiM + (HM − DBM) ∧ Ci − BM ∧ (Gi − ϑi
BDB) −

1

2
Zj

MCij

+dN
ijF

j ∧ BMN +
1

3
dN

ijZ
jP BMNP +

∂Q♭

∂ZiM
F♭ , (C.14)

LM
ij = DEM

ij − F ij ∧ BM + ZiNF j ∧ BMN −
1

3
ZiNZjP BMNP

−
1

2
dM klA

ik ∧ dAjl −
2

15
Xkl

ndM nmAiklm ∧ dAj −
1

5
Xkl

jdM nmAikln ∧ dAm

−
1

18
Xkl

jXnp
qdM mqA

iklmnp +
∂Q♭

∂dM
ij

F♭ . (C.15)

These field strengths are related by the following Bianchi identities

DF i = ZiMHM , (C.16)

DHM = dM ijF
ij − Zi

MGi , (C.17)

DGi = 2dM
ijF

j ∧ HM + ϑi
AKA , (C.18)

DKA = TA j
kF j ∧ Gk −

1

2
TA

MNHMN

+YA i
BLi

B + YA
iMLiM + YA

M
ijLM

ij . (C.19)

C.3 Duality relations

HΛ = JΛ = bΛΣ ⋆ HΣ + cΛΣHΣ , (C.20)

Gi = aij ⋆ F j , (C.21)

KA = ⋆jA , (C.22)

L♯ = ⋆
∂V

∂c♯
. (C.23)
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