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ABSTRACT: We construct the tensor hierarchies of generic, bosonic, 5- and 6-dimensional
field theories. The construction of the tensor hierarchy starts with the introduction of
two tensors: the embedding tensor ¥ which tells us which vector is used for gauging and
another tensor Z which tells us which vector is eaten by a 2-form. In dimensions d > 5
these two (deformation) tensors are in principle unrelated. Besides ¥ and Z there can be
further deformation tensors describing other couplings unrelated to (but compatible with)
gauge symmetry. For each deformation tensor there appears a (d — 1)-form potential and
for each constraint satisfied by the deformation tensors there appears a d-form potential in
the tensor hierarchy. For each symmetry of the undeformed theory there is an associated
(d — 2)-form appearing in the tensor hierarchy. Our methods easily generalize to arbitrary
dimensions and we present a general construction for the d-, (d — 1)- and (d — 2)-form

potentials for a tensor hierarchy in d dimensions.
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1 Introduction

The structure of the tensor hierarchy! of general bosonic 4-dimensional field theories has re-
cently been elucidated in ref. [11] and applied to the search of higher-rank p-form potentials
in gauged N = 1,d = 4 supergravity in ref. [12].

It is natural to try to extend the recently obtained results on 4-dimensional tensor
hierarchies to higher dimensions. The 4-dimensional results suggest the existence of some
general features common to all d-dimensional tensor hierarchies:

1. The one-to-one relation between (d—2)-form potentials (which always carry an adjoint
index) and the symmetries of the theory. We will henceforth refer to them as adjoint-
form potentials or simply ad-form potentials.

2. The one-to-one relation between the (d — 1)-form potentials and the components of
the embedding tensor (and, possibly, other deformation tensors). Following ref. [13],

we will call these potentials de-form potentials.

3. The one-to-one relation between the top- (d-) form potentials and all the constraints
satisfied by the embedding tensor (and, possibly, other deformation tensors).

Some of these relations have been discussed in ref. [14].

In this paper we are going to study in detail 5- and 6-dimensional field theories and we
are going to find the general rules that determine the structure of their associated tensor
hierarchies. The special case of maximal supergravity in five and six dimensions has been
considered in refs. [15, 16].

As we are going to see, there are important differences between the maximal super-
gravity case and the general case, the principal difference being the existence of more
independent deformation tensors in addition to the embedding tensor. These deformation
tensors switch on new couplings such as massive deformations, unrelated to (but compatible
with) Yang-Mills gauge symmetries, which are determined by the embedding tensor alone.
In maximal supergravities, supersymmetry determines these deformation tensors entirely
in terms of the gauge group and the embedding tensor. In the general case the deformation
tensors are, up to a few constraining relations, independent of the embedding tensor.

Taking into account the existence of several deformation tensors we find that the
highest-rank potentials of the tensor hierarchy can be constructed as follows. Let us denote
by A’ the 1-forms of the d-dimensional tensor hierarchy, by 974 the embedding tensor where
A is an adjoint index of some symmetry group and by ¢* the deformation tensors (including
the embedding tensor). Here £ denotes the corresponding indices. The magnetic duals of
the 1-forms will be the hierarchy’s (d — 3)-forms Aj, with (d — 2)-form field strengths F7.
These will contain a Stiickelberg coupling to the ad-form potentials that we are going to
denote by Cy, and the coupling tensor will be the embedding tensor ¥;4, so

F]N@A]—i—---—i-ﬁ]ACA. (1.1)

!Tensor hierarchies have been introduced in refs. [1-3]. They arise naturally in the embedding tensor
formalism [1, 2, 4-6]. For recent reviews see refs. [7-10].



The (d—1)-form field strength for C'4, denoted here by G 4, can be obtained by hitting
the above expression with a covariant derivative ®. This gives rise to an expression for
914G 4 and determines G4 up to terms that vanish upon contraction with 974, These
extra terms in G4 form Stiickelberg couplings to de-form potentials. The coupling tensors
will vanish upon contraction (of the adjoint index) with the embedding tensor. They can
be constructed in the following way. All the deformation tensors must be gauge-invariant
tensors, and, if their gauge transformations are written as

dact = —AQt, (1.2)

where the Af(z) are the 0-form gauge transformation parameters of the 1-forms A, then,
we find a constraint

Qif =—0; =0, (1.3)

for each of them. All these constraints are, by construction, proportional to the embed-
ding tensor
oach = A9 A4, (1.4)

and can be written in the form
Q[ti = —ﬁ]AYAﬁ, YAﬁ = 5Acﬁ, (1.5)

which provides us with as many tensors Y4? as we have deformation tensors ¢f. We will
follow the above convention to normalize the constraints Q and associated Y-tensors.
The (d — 1)-form field strengths will have the form

GANQCA—F--'—FZYAﬁDﬁ. (1.6)
#

where we have introduced as many de-form potentials Dy as we have deformation tensors
¢!, transforming in the representation conjugate to the representation in which the ¢
transform. This is precisely the number of de-form potentials that we need to introduce in
the action as Lagrange multipliers enforcing the constancy of the deformation tensors

/EJMADW (1.7)
t

Finally, the d-form field strengths K; of the de-form potentials Dy will have Stiickelberg
couplings to top-form potentials. As different from the 4-dimensional case in which there
is only one Y-tensor and the Stiickelberg coupling tensors (W) are annihilated by the Y-
tensor, in the general case the W-tensors are not individually annihilated by the Y-tensors.
Instead, there are combinations of Y- and W-tensors that vanish.

These combinations can be found systematically as follows. Let us introduce as many
top-form potentials as there are constraints satisfied by the deformation tensors. This is
precisely the number of top-forms that we need to introduce in the action as Lagrange
multipliers enforcing all the algebraic constraints. We will have top forms E' 4 associated
to the constraints Q! that express the gauge-invariance of the deformation tensors, but we



will have more top-forms, associated to other constraints. Let us denote all the constraints
satisfied by all the deformation tensors Q° and the top forms by E, and let us construct
the formal combination

> QE,, (1.8)
b

which vanishes because it is linear in the constraints. This is the term one needs to add to
the action in order to enforce the constraints Q° = 0.

The infinitesimal linear transformations of this term generated by the matrices T4,
that we will denote by 04, also vanish because these transformations are proportional to
the constraints Q. Since the constraints Q° are functions of the deformation tensors, using
the chain rule we can write this vanishing infinitesimal transformation as

) ﬁaQb ﬁaQb
0=0a (Y QB | =) ZéAcW B=)_ ZYAW E,, (1.9)
b b f b #

where we have made use of the general definition of the Y-tensors eq. (1.2). Since, in this
expression, the top forms F, have arbitrary values, we get, for each of them, the identity

> YA =0, (1.10)
t

where we have defined the W-tensors
Wy = —. (1.11)

Then, the d-form field strengths Ky of the de-form potentials Dy will have the gen-
eral form
Ky ~®Dy+-+ > W/E,. (1.12)
b
This scheme leads to a number of ad-form potentials C'4 equal to the number of
(continuous) symmetries and, therefore, to Noether current 1-forms j4. This is what we
expect since, in order not to add further continuous degrees of freedom to the theory the
(d — 1)-form field strengths G4 must be dual to the Noether currents

GaA~*ja. (1.13)

This scheme also leads to a number of de-form potentials Dy that is equal to the number of
deformation tensors ¢f. As mentioned above, we need this number of deformation tensors
to enforce the constraints def = 0 in the action. With a Lagrange multiplier term enforcing
the constancy of the deformation tensors we can also vary the action with respect to the
deformation tensors which have off-shell been promoted to fields. This leads to duality
relations for their d-form field strengths Ky of the form

oV

Finally, as already said, this scheme leads to one top-form potential for each constraint
satisfied by the deformation tensors.



The tensor hierarchy can be considered to be a technique that can be used to predict
in which way a given theory can be deformed. To make such a prediction one can construct
the de- and top-form field content of a particular theory. The above scheme is only based on
necessary conditions and is not guaranteed to be sufficient to construct all possible de- and
top-form potentials of a particular (bosonic) field theory.? In order to see in which manner
the above described construction of the de-forms is not sufficient let us consider possible
sources of it failing to be so. For example, it could happen that in order for G 4 to transform
gauge-covariantly we need to introduce a Stiickelberg coupling with a tensor Y4 which is
not of the form d4¢ where ¢ is some deformation tensor but which nonetheless satisfies
9;4Y4 = 0. Even though we have never encountered such a Y-tensor we have not been
able to disprove their existence. Similarly, there may be additional top-forms contracted
with W-tensors that are not of the form eq. (1.11), but which nonetheless satisfy eq. (1.10).
Once again we did not prove that every W-tensor that satisfies eq. (1.10) is of the form
eq. (1.11) but we are not aware of any counterexamples. Another source of failure of the
above described program to find all the de- and top-form potentials is that there may
exist de- and top-form potentials which cannot appear in any Stiickelberg couplings. This
happens for example in N = 1, d = 4 supergravity where there exists a 3-form potential
that is dual to the superpotential ref. [12]. This 3-form does not show up in any of the
Stiickelberg couplings of the 4-dimensional tensor hierarchy and there exists no choice of
deformations tensors for which it would show up in a Stiickelberg coupling.

The construction of any tensor hierarchy starts with writing down the most general
form of the 2-form field strength F! which includes both Yang-Mills pieces as well as
Stiickelberg couplings to 2-forms. From this field strength, which at this stage should
be thought of as an Ansatz, one can construct a Bianchi identity by hitting it with a
covariant derivative ©. From ®F! we can obtain that part of the field strength of the
2-forms that does not contain the Stiickelberg couplings to the 3-forms. By making once
again an Ansatz for such a coupling we can proceed to compute the Bianchi identity of the
3-form field strengths and continue in this way until we reach the d-form field strengths
of the de-form potentials which contain Stiickelberg couplings to the top-form potentials.
The Ansétze made throughout this procedure will then lead to a nested set of Bianchi
identities provided the various Stiickelberg coupling tensors satisfy certain relations. Once
these relations have been obtained we have at our disposal the most general set of tensor
couplings® that a particular bosonic theory can have and we may proceed to construct
Lagrangians for these tensors.

This program will be performed in detail in section 2 for the case of 5-dimensional field
theory and in the section 3 for the case of 6-dimensional field theory.

2When there are also fermions the tensor hierarchy may get extended due to ad-forms that are dual
to currents bilinear in fermions that appear in the 1-form equations of motion. These ad-forms may then
have Stiickelberg couplings with new de-forms, etc. This has been shown to happen in N = 1, d = 4
supergravity in ref. [12].

3 As mentioned before the tensor hierarchy does not predict those potentials that cannot appear in the
Stiickelberg couplings. These tensors must be dealt with separately.



2 The d = 5 general tensor hierarchy

2.1 d =5 bosonic field theories

In d = 5 dimensions vectors are dual to 2-forms. We can, therefore, use as a starting
point, theories with spacetime metric g,,, scalars ¢* parametrizing a target space with
metric gz, (¢) and 1-forms A’ only. The most general action with (ungauged and massless)
Abelian gauge-invariance A’ = —dA’, no gauged symmetries and terms with no more

than two derivatives that we can write for these fields is*
1 1 1
S = /{*R+§gmy(¢)d¢m/\*d¢y—EQU(QS)FI/\*FJ—*V(¢)+§C'1JKF1/\FJ/\AK} . (2.1)

where
FL=qAl, (2.2)

and where g, (¢) and ay;(¢) are symmetric, positive-definite matrices that depend on the
scalar fields, V(¢) is a scalar potential and C7jx is a constant, totally symmetric, tensor;
any other components of Cj ;i apart from the totally symmetric ones would not contribute
to the action and, therefore, without loss of generality, they are set equal to zero.

This action takes exactly the same form as the bosonic action of minimal d = 5 su-
pergravity coupled to vector supermultiplets and hypermultiplets (if we assume all the
corresponding scalars are represented by the ¢*) given in ref. [17]. However, although
probably most interesting applications of this work will be in the context of supergravity
theories, we stress that here we are considering a general field theory in which there is no
underlying real special geometry, the objects g,y (¢), ars(¢), and Cryx need not be related
by real special geometry as in the supersymmetric case and the scalars parametrize arbi-
trary target spaces and occur in a number which is unrelated to the number of vector fields.

From this point of view, the tensor Cr i is just a set of possible deformations of the
minimally coupled theory (which has C7yx = 0). It gives rise to vector couplings unrelated
to Yang-Mills gauge symmetry. This type of couplings are not possible in d = 4 dimensions.

If we only vary the 1-forms in the action, we get

552/{—514[/\*55%}, *%:d(a[J*FJ)—C[JKFJ/\FK, (2.3)

and, on account of eq. (2.2), the equation of motion can be rewritten in the form
d(arg*x F? — CrygF? A AK) =0. (2.4)
This suggests to define the 2-forms B; dual to the 1-forms A’ via
arg* FY — CryxF/ N AK = dBy. (2.5)

Since, by definition, ay; « F/ is gauge-invariant, the gauge-invariant field strengths of the
2-forms can be defined by

H]EdB[+C[JKAJ/\dAK7 (26)

40ur conventions for differential forms, Hodge duals etc. can be found in appendix A.



so that we have the Bianchi identity and duality relation
dH[:C[JKFJ/\FK, H[Z(Z[J*FJ. (27)

The gauge transformations of the 1- and 2-forms can be inferred from the gauge-
invariance of their field strengths:

SpAl = —dA”, (2.8)
oABr = dA]+C[JKAJFK. (29)
The construction of the tensor hierarchy based on the embedding-tensor formalism

should reproduce these results in the ungauged limit 9;4 (with any possible other defor-
mation tensor not being C7yx sent to zero as well).

2.2 Gaugings and massive deformations

Let us consider the infinitesimal global transformations with constant parameters o of
the scalars ¢%, 1-forms A’ and dual 2-forms By:

000" = aka"(9), (2.10)
6o AT = ATy ;1 A7 (2.11)
8aBr = —aTu’By, (2.12)

where the matrices T4 belong to some representation of a group G and the k4% (¢) are the
contravariant components of vectors defined on the scalar manifold. Some of the matrices
and the vectors may be identically zero. They satisfy the algebras

(T4, Tp) = —fas“Tc, lka,kp) = —fap“kc . (2.13)

These transformations will be global symmetries of the theory constructed in the pre-
vious section if the following four conditions are met:

1. The vectors kas*(¢) are Killing vectors of the metric g, (¢) of the scalar manifold.
2. The kinetic matrix ay; satisfies the condition
£aar; = —2T4 " apk, (2.14)
where £ 4 denotes the Lie derivative along the vector k4.

3. The deformation tensor is invariant

54C1 K =Yarik = —3T41"Cyryp = 0. (2.15)

4. The scalar potential is invariant

£AV =kaV =0, (2.16)



In what follows, we will relax these conditions. Conditions 1 and 2 above cannot
be relaxed but it is unnecessarily restrictive to demand that the symmetry group of the
minimally coupled undeformed theory which has Crjx = 0 and V' = 0 is equal to the
symmetry group G. More generally we can allow 04Crjx = Yarjx # 0 and £4V =
kaV # 0 and instead consider that subgroup of G under which Crjx and V are invariant.
In this way we have the situation that C7yx and V introduce deformations that break the
symmetry group G of the undeformed theory to a subgroup of G.

From the point of view of the construction of gauge-invariant theories using the embed-
ding tensor formalism the above conditions 3 and 4 are also unnecessary. In general, the
embedding tensor projects the above transformations into a smaller subgroup of G. The
theory that we will construct will be only required to be invariant under gauge transfor-
mations of this smaller subgroup, but not necessarily under all the above global transfor-
mations. In the ungauged limit, i.e. setting the embedding tensor equal to zero, the theory
will be invariant under the global transformations of the gauge group and not necessarily
under any other global transformations.

From the general construction of the de- and top-form potentials, explained in the
introduction, we know that if the tensor Cjjx is invariant under the transformations gen-
erated by all the matrices T4, then the tensor Y sk will vanish identically and there
will not be a non-trivial 4-form potential D'/X dual to C;x. There are cases of physical
interest (such as the maximal d = 5 supergravity of ref. [15]) in which this is what happens.

After these comments, we can now proceed to gauge the above transformations. This
can be done by promoting the constant parameters a” to arbitrary functions and using the
1-forms as gauge fields. The embedding tensor ¥4 will relate the symmetry to be gauged
with the 1-form that will gauge it:

oA (z) = A2, (2.17)
Thus, we want the theory to be invariant under the local transformations of the scalars
oag” = N IAks™ (), (2.18)
and for this we need the covariant derivatives
D¢ = do” + AL kA% (9). (2.19)
It can be checked that ®¢" transforms covariantly if we impose the quadratic constraint
Qi = =09, = 92T /50K — 9,59, fpe® =0, (2.20)
and impose that the vectors transform according to
A AT = —DAN + AAT = — (AN + 94T T ATA) + AAT, IAAAT =0, (2.21)

where the term AA! is, otherwise and so far, arbitrary.
The above quadratic constraint means that ¥;4 is an invariant tensor since

It = —AQ A = A9, Byt =0, (2.22)



where
Var® =64917 =09, fac? — Ta ™ 9k”P, (2.23)

is the Y-tensor associated to the quadratic constraint according to the general formalism
explained in the introduction.

2.2.1 The 2-form field strengths F’

The next step is to construct the field strength F! of the 1-forms. If we take the covariant
derivative of the scalars’ covariant “field strength” ©¢* we find

1
VDY = <dAf + §XJK1AJK> O hea® (2.24)
where, from now on, we use the shorthand notation®
Al T=ATN - NAT ) dATT =dAT A ndAT, FTI=FIA- - AF7 ) ete. (2.25)
and where we have defined, as is customary, the X generators
XK =927, 5. (2.26)

Since the left hand side of the above Bianchi identity is covariant, by construction, the
right hand side is also covariant and it is natural® to define

DD* = FL9 k4", (2.27)

1
FI = qA! + 5XJKIAJK +AF!, (2.28)
IAAFT = 0. (2.29)

Requiring gauge-covariance of F one finds that the term AF! must transform according to
1
ONAF! = —DAAT+2X )" |ATFE 4+ S AT N o AR (2.30)

In order to satisfy the constraint AAFT = 9,4A AT = 0 we introduce a Stiickelberg
tensor Z17/ satisfying
QM =v,A2"1 =0, (2.31)

and define
AF! = 7By, AAT =77, (2.32)

where A are the 1-form gauge parameters under which the 2-forms Bj must transform.
Observe that the constraint (2.31) tells us that the 2-forms can only occur as

Stiickelberg fields in the ungauged vector field strengths. Only the ungauged vector fields

can be eaten up by the 2-forms which will become massive. We are thus describing through

®We will use a similar notation for exterior products of 2-forms and 3-forms throughout the rest of the
paper, for example: Bry = Br A By etc.

6Actually, it can be argued that this is the only solution that does not require the introduction of
additional fields in the theory.



the introduction of Z!/ besides gaugings also massive deformations of the theory described
in section 2.1.
The gauge transformation of AF! implies

1
ZY5aBy = Z" DN+ 2X iy |NFE + 5AJ ASNAR ] (2.33)
This solution will only work if X( JK)I ~ ZILO ;51 for some tensor O i1, symmetric, at

least, in the last two indices. It is natural to identify this tensor with the fully symmet-
ric tensor Cp i that we know can occur in a Chern-Simons term in the action. This

identification allows us to recover the theory of section 2.1 in the ¥;4, Z/ — 0 limit.
Thus, we impose the constraint”
Qix' =Xy —Z"CykL =0, (2.34)
and find that the field strength
Fl :dAI—i—%XJKIAJK—i—ZUBJ, (2.35)
transforms gauge-covariantly under the gauge transformations:
WAl = —DAN — Z1IA;, (2.36)

1
oABy = DAN;+2C)krL (AKFL+§AK/\5AAL> + ABy, ZIJABJZO, (2.37)

where the possible additional term AB; will be determined by the requirement of gauge-
covariance of the 3-form field strength H ;.

The Stiickelberg tensor Z// and the Chern-Simons tensor Crsx have to be gauge-
invariant tensors, which, following the convention in eq. (1.2), leads to the constraints

Q" = 6,217 = — (Xp'Z8 + X7 Z7) =0, (2.38)
Qrixr = 61Cxr = 3X1;M Crepyar =0, (2.39)

and to the Y-tensors
Yall = 642" = Ty 257 + Ty ! 71K (2.40)

and Y477k given in eq. (2.15), which are both annihilated by the embedding tensor by
virtue of the above constraints.

2.2.2 The 3-form field strengths H;

The covariant derivative of the 2-form field strength F, after use of the generalized Jacobi

identities 9
XM X' = gZINX[JKMCL}MNa (2.41)

"In d = 4 dimensions there is a similar constraint which is linear in the embedding tensor. In d = 5 the

constraint has terms linear and of zeroth order in the embedding tensor.

,10,



is
1
@FI - ZIJ @BJ + CJKLAK AN dAL + gCJP[KXML}PAKML 5 (242)
which leads us to define the 3-form field strength
oF = 7" H;, (2.43)
1
H; =9B;+ CJKLAK A dAF + gCJp[KXML}PAKML + AHy, (2.44)
ZIJAHJ — 0’ (245)
where AH; will be determined, together with AB; by requiring gauge-covariance of H ;.
Instead of constructing gauge transformations realizing gauge-covariance we construct a
Bianchi identity for H; in terms of gauge-covariant objects.
Let us first take the covariant derivative of both sides of the Bianchi identity of F!
eq. (2.43). Using the Ricci identity
DOF! = X i 'F/K = 721 ¢y FIK (2.46)
we find
ZIE®H, — CryxF/5) =0, (2.47)

which implies that the Bianchi identity for H; must have the form®
DH; = CryxF'% + ADH;,  Z7'ADH; =0, (2.48)

which, in turn, implies that A® H; must be proportional to the invariant tensor(s) we men-
tioned before. To find them, we have to compute directly © H; using the above expression.
In order to make progress in the calculation we must impose the constraint

7z = 77T, (2.49)

This property implies that the quadratic constraint Q”% and tensor Y47% can be written
in the form
Q' =ox VzKIL -y K = _ory IV ZKIE (2.50)

A tensor with properties similar to those of Z!/ appears in N = 2, d = 5 supergravity with
general couplings to vector and tensor supermultiplets in ref. [17].

2.2.3 The 4-form field strengths G4
Using egs. (2.31) and (2.49) we find that AH; and A® H; can be taken to be

AH; =9;4Cy , ADH; = 9G4, (2.51)

where 974G 4 is the gauge-covariant field strength of the 3-forms ¢ 7AC 4. This determines
the Bianchi identity of H; to be

@H[:C[JKFJK+19[AGA. (2.52)

8 AD H; should not be confused with DAH;.

— 11 —



An explicit computation of ® Hy gives
1 1
Gyqg =9C4 + TAKI [(FK — §ZKLBL> A Br + gC[LMAKL A dAM

1
+ECILPXMNPAKLMN] +AGa, (2.53)
IAG4 = 0. (2.54)

According to the general scheme outlined in the introduction we expect that AG 4 will be
formed out of terms proportional to the three Y-tensors Y ? = 6495, Ya!7 = 64217,
Yarsx = 04CT K associated to the three deformation tensors, contracted with some de-
form potentials. Each of these Y-tensors is annihilated by the embedding tensor. We will
next confirm that this is indeed what happens.

2.2.4 The 5-form field strengths K

To find the invariant tensors and de-forms that make up AG 4 we follow the same procedure
as before and take the covariant derivative of both sides of the Bianchi identity (2.52) for
H;. Using the Ricci identity
DOH; = —ﬂJATA]KFJ AN Hg (255)
and the Bianchi identities for F! and H;, we get
9t [DGa — Tas“F/ AHg] =0, (2.56)
from which it follows that the Bianchi identity for G4 will have the form

DGy =TaXF/NHg +ADGo,  9/2ADGH=0. (2.57)

This implies that ADG 4 must be proportional to the same invariant tensors that AG 4 is
proportional to. A direct calculation of DG4 gives the result

DG4 :TAKIFK/\H[
1
+v4 1Y [ii)B[—HI} A By

1
+YA1B [(FI — ZILBL) ANCp+ ETB JMCKMLAIJK A dAF

1
+ @TB N COxpy Xyt ATTEEM

+Ya17K [gAI AdATE + ZXLMKAILM AdA7 + %XLMJXNPKAILMNP
+DAG, . (2.58)

This tells us that we must introduce three de-forms D!/, D! 4, and D'/X with the same

symmetries as the respective Y-tensors, and take

AGA =Y D1y +YaBDI g+ Yar e DK, (2.59)
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in order for DG 4 to be gauge-covariant. This is simply because the terms proportional
to the Y-tensors must each be gauge-covariant and this can only be the case of they form
field strengths of de-forms. The ad-form field strength G 4 and its Bianchi identity take
the final form

1 1 1
Gy = @CA+TAKI |:<FK§ZKLBL>/\B]+§C]L1\/[AKL /\dAM+EC[LPXMNPAKLMN

+Ya" D1y +Yar®D g + Yarx DVE (2.60)
DG = Tax ' FENH + YAV Ky + Y PK g + YA g KK (2.61)
where
Kij =Dy — [HU - %@B[I} ABj+AKpy, (2.62)
Klg=9Dg +(FI = ZEB;) A Cp + 1—12TBJMCKMLA”K A dA"
+%TB INCrepn X P AELM AR (2.63)

1 1 1
KK — @DIJK+§A(I A dAJK)+ZXLM(KAI|LM A dA\J)+2_0XLM(JXNPKAI)LMNP

+AKTE (2.64)
in which AK7y, AK'p and AK/EK gatisfy
YAl"AK;;+ YaPAK 5 + Yo e AKT7E = 0. (2.65)

As explained in the introduction the terms AK will be contractions of (W-)tensors
and 5-form potentials. To determine the W-tensors and the 5-form potentials, we take the
covariant derivative of the Bianchi identity of G 4, eq. (2.61). Ignoring the fact that we are

working in d = 5 dimensions we get
1 1
ya!l [”}DKU—iHU} +Yu/P DK ' p—F ' ANGp|+Yarik @K”K—gF”K =0. (2.66)

If we take the covariant derivative of the above expression, we find

FENKyun{+2Ya™ X /™ — Ya Py}
+FPEL A HM{—YAIMCKLI —Yar BT ™M - YAIKLZIM}
+Gp AN H{=Ya" 9P —Yu,BZ17}
+FI AN KR =Y PYp grr + 3Yamux XM}
+FEANK p{YaPWs (/") =0, (2.67)

where
WalksP =0k facP0," + Xk opP — Y, P0k7, (2.68)

as in d = 4.
Each term in braces is linear (or quadratic) in Y-tensors and vanishes identically upon
use of the 5 constraints Q;7%, Qr/%, Q41, Qr k1, Qrs*. Furthermore, the index structure
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of the products of field strengths which multiply the 5 expressions in braces coincides with
that of the duals of those 5 constraints. Actually, each of those terms corresponds to one
of the identities in eq. (1.10), and we can rewrite the above expression in the form

o 0Qr7E pOQ7E
oz LM 091 B
oQr % 5OQr oQ % }

Y, Y
97 L0 +Yar 90, B + ALMNaCLMN
K 0QB1 caQBI}

Y
a7k T 1AL g9 0

IQrJKL 0QrIKL
FIANKIEL Sy B2 43y, —
+ AM 50,5 +3YamnNP 9N

Q1" }

+YarL

FIAK g {YA

+FIJ/\HK {YALM

+Gp N Hy {YA

o[ =0 (269

The scheme explained in the introduction leads us to assume the existence
of five 5-forms FEl i, BV, Ear, ET/5L E7 4 dual to the 5 constraints Q7%

Q% Q. Q1 K1, Qrs™ so

+FIAK g {YAKC

AKry = 22Xk "EX jyp = Crepr g™ =91 Ea g (2.70)
AKBI = WBIKJDEKJD _ ZIJEBJ _ TBKJEJIK _ YBJKEIJK

—YpxmETTEM (2.71)

AKTE = 3x,,UIEpEITRM o 7L g JK) (2.72)

Each of these expressions is of the form AK; = Y F,0Q°/0c*.

With the determination of the 5-form field strengths K we have completed the construc-
tion of the 5-dimensional tensor hierarchy. The gauge transformations of all the potentials
can be obtained by constructing the most general gauge transformations under which all
the field strengths transform gauge-covariantly. We will not proceed to determine these
gauge transformations as they are in principle determined by the Bianchi identities.

2.2.5 Gauge-invariant action for the 1- and 2-forms

The gauge-invariant action for the 1- and 2-forms is essentially the one given in ref. [15],
with the Eg tensors Z!/, Cryk replaced by arbitrary tensors satisfying the five algebraic
constraints, giving:

5= / {*R + 300y (81D AXDS — Zars(O)F! AxF? —V(9)

1 1
—ZIJB[ VAN |:HJ — §©BJ:| + gC]JK [AI A dATE + EXLMIAJLM A dAK

3

where the scalar potential V' (¢) may contain more terms than the one in eq. (2.1). The
new terms must depend on the deformation tensors in such a way that the potential of the
ungauged theory is recovered when they are set to zero.
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A general variation of the above action can be written in the form?

58 58 55 58
— py U r, & I e _ J K o~
55_/ {59 Tz 0p* x e 0A /\*514[ (6B — Crgg A7 NGA )/\*53]} , (2.74)

where the equations of motion are!'?

S 1 - 1 -

Sghv = *{Guu + §gmy |:®u¢ D,¢Y — §guu®p¢ ®p¢y:|

1 Lpps L ipo g 1
517 FF7,, 4gw,F F’ 0| + 2gﬂ,,V , (2.76)

) 1 I J

*% = Juy@ * D¢ + §8xaUF AN*F? + %0,V , (2.77)
55

xsar = Dlars * FY = Cryx F7E — 9144, (2.78)
S

x— = =7 (agx x» FX — Hy), (2.79)
0B;

in which we have defined the 1-form currents

Ja = kaD9". (2.80)

Now, we can substitute in the general variation of the action the gauge transformations
of the fields

oad® = A9 kA" (2.81)
SAAT = —DAT — 71T\, (2.82)
1
SABr = ®A1 +2CriK <AJFK + 5AJ A 5AAK> . (2.83)

Checking invariance of the action under the gauge transformations generated by 0- and
1-form parameters amounts to checking the following two Noether identities:

S ) S
—+2 F’ _— Al s® % — = 2.84
©*5AI+ Crik /\*6BK+79[ ka *(5@59” 0, ( 8)
8S ;5 65

The second identity is easily seen to be satisfied. The first identity can also be shown
to be satisfied upon use of the Killing property of 9;4k4®, the property

O kaaskx = —2Xr aryr (2.86)

9The tilde in the first variation w.r.t. the 1-forms A’ defines a modified first variation which has a simpler
form than the total first variation which would be, as usual, the sum of all the terms proportional to A’
and contains terms proportional to the equations of motion of other fields. We will use similar simplified
first variations in the 6-dimensional action.

YOExplicitly, we have

DxDP” =dxDP” + 1. "DdY AxD¢” + 910y ka” AT A xD Y . (2.75)
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of the kinetic matrix, the condition
IrkaV =0, (2.87)

of the scalar potential and the constraint Q; jxr = 0. Observe that these are the same
conditions required by global invariance but projected with the embedding tensor, which
means they are weaker conditions.

We can now relate the equations of motion derived from this action and the tensor
hierarchy’s Bianchi identities via the duality relations

a]J*FJ:H], (288)
*ja = Gy, (2.89)
oV

With these duality relations, the 1-form equations of motion become the Bianchi identi-
ties for the hierarchy’s 3-form field strengths H;. The projected scalar equations of motion
ka®* % become the Bianchi identity of the hierarchy’s 4-form field strengths G 4. In order
to show this one must use the Killing property of the k4%, eq. (2.14) for the kinetic matrix,
and the following expression for k4 V'

1%
kaV = ZYAﬁ% . (2.91)
t

Now that we have completed the construction of the 5-dimensional tensor hierarchy
and provided an interpretation of the various potentials we summarize these results in
table 1. We will explain the meaning of the table by discussing in detail the case of the
2-forms. The other forms then go analogously.

We have seen 2-forms appearing in the field strengths of the 1-forms. These are un-
gauged 1-forms because the field strengths of the gauged 1-forms do not contain any 2-
forms. These 2-forms are Z!/B;. Their gauge transformations are of the form Z//§B; =
Z'"D A plus terms involving the 0-form gauge transformation parameter A’, but not the
2-form gauge transformation parameter A 4. Therefore, all the gauge transformations that
the Z!7 B have are massless gauge transformations. This is indicated in table 1 by the term
“massless” in the column called “gauge transformations”. Since the Z!/ B 2-forms appear
in the field strength of the ungauged 1-forms they form Stiickelberg pairs with these un-
gauged 1-forms. This is indicated in table 1 by “ungauged A’” in the column “Stiickelberg
pair with”. It is not possible to say, unless we explicitly know all the components of Z7 ex-
actly which 2-form B; forms a Stiickelberg pair with which 1-form A’. Further, we also indi-
cated that the 2-forms Z/” B; whose field strengths are Z!/ H; are dual to Z'/a; F¥ and
that 2-forms with these gauge transformation properties can only exist whenever Z7 # 0.
Besides the 2-forms Z/ B there are also those which do not appear in the field strengths of
the 1-forms. Such 2-forms fall into two categories depending on their gauge transformation
properties. The first possibility is that their field strengths contain Stiickelberg couplings
to 3-forms. These exist for those I for which the Stiickelberg coupling tensor ¥;4 # 0 and
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they will have massive gauge transformations.These 2-forms cannot also belong the Z// B
type discussed earlier. Finally it can also happen that there are I values for which the
2-forms are not forming any Stiickelberg pair with either 1-forms or 3-forms. Such 2-forms
occur for example in the theory in which there is no embedding tensor nor the Stiickelberg
tensor Z. More generally they can occur in the gauged theory but only for those I for
which ;4 = Z7 = 0. The other entries of table 1 should be read in an analogous fashion.

The 1-forms have been left out from the table since they behave the same in any
tensor hierarchy in any dimension. There are always three types: 1). gauged 1-forms
which always have massless gauge transformations and exist for all those A for which
914 # 0, 2). ungauged 1-forms with massive gauge transformations which exist for all
those I for which Z7 # 0 and 3). ungauged 1-forms with massless gauge transformations
which exist for all those I for which ¥;4 = ZI7 = 0.

We end the discussion of the 5-dimensional tensor hierarchy with some comments
about possible redundancy of potentials. Potentials that have massive gauge transforma-
tions can be totally gauged away, but which particular potentials have a massive gauge
transformation (i.e. which p-form potentials are Stiickelberg fields for a (p + 1)-form
potential) depends on the Stiickelberg tensors occurring in their field strengths, as shown
in table 1. Using a massive gauge transformation with a p-form (local) parameter to
eliminate a p-form Stiickelberg potential partially fixes the standard (massless) gauge
transformations of the associated (p + 1)-form potentials, which become massive. The
top-forms are special because they have massive gauge transformations but they are not
Stiickelberg fields for any higher-rank potential.

For the p-forms with p = 1,2,3 this would lead to a (partial) gauge fixing of the 2-, 3-
and 4-form gauge transformations. When this is done one can for example eliminate some of
the 3-forms C4 for certain values of A. In the case of the 4-forms it can happen, depending
on the details, that an entire form Dy can be gauged away. The 4-form massive gauge
transformations are of the form Dy = —Wﬁ"Ab where A, is the 5-form gauge transformation
parameter, 6F, = DA,. The massive gauge transformations of the 4-forms Dy = —WﬁbAb
can sometimes be used to eliminate entirely some of the 4-forms Dy. This happens for
example in gauged maximal supergravity where there is only one deformation tensor, the
embedding tensor, and hence there is only one 4-form. Similar statements apply to the
5-forms F, that always come contracted with Wﬁb and are thus determined up to massive
gauge transformations of the type dE, = X, with Wﬁbzb = 0.

3 The d = 6 general tensor hierarchy

3.1 d =6 bosonic field theories

In d = 6 dimensions we can have, apart from a spacetime metric and scalars ¢*, n; 1-
forms A' and ns electric 2-forms BA. The 1-forms A* are dual to 3-forms C; and the
electric 2-forms B* are dual to magnetic 2-forms By (we will study their definitions later).
Furthermore, in d = 6 dimensions we can have real (anti-) self-dual 3-forms and, therefore,
we can constrain the 2-forms to have (anti-) self-dual 3-form field strengths.

We will write down an action ignoring momentarily the (anti-) self-duality constraint
and impose it on the equations of motion derived from that action, as it was done in
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Potential Gauge Interpretation Stiickelberg Existence
transformation | (field strength dual to) pair with
By massive argF’ 9140, VI:Q?IA%O
Z B, massless ZYa i FK ungauged A’ VI Z17 40
By massless argF’ none VI:9A=217=0
Cy massive sym;;lg:;nt:riieszy v YAﬁDﬁ VA : Y, #£0
914C, massless current ja of By VI 9 IA#O
gauged symmetry
Cy massless current ja of none VA: YAt =094=0
global symmetry
Dy massive oV /oct Wﬁl’Eb Vi Wﬁb#O
YAﬁDﬁ massless Y240V /0t Cy VA : Y4840
D massless oV /dct none Vi W =YaF =0
WﬁbEb massless enforces constraints Dy N4 Wﬁb#O

Table 1. All the p > 2 forms of the 5-dimensional tensor hierarchy, their Stiickelberg properties
and physical interpretation.

N = 2B, d = 10 supergravity in refs. [18, 19]. This can only be done consistently if the
field strengths and action are such that the Bianchi identities transform into the equations
of motion and viceversa under electric-magnetic duality transformations of the 2-forms. In
particular, if the action has Chern-Simons terms of the form H A F' A A which give rise to
terms proportional to F' A F' in the equations of motion of the 2-forms, the field strengths
H must necessarily have terms of the form F A A.

Taking into account, thus, the possibility of having (anti-) self-dual 2-forms, the most
general action with (ungauged and massless) Abelian gauge-invariance, with no more than
two derivatives that we can write for scalars, vectors and (electric) 2-forms is, in differential
form language,!!

1 1 . A
S = / {— * R+ §gwy(q§)d¢$ A xd¢¥ — §aij(¢)FZ A % F7
1 1 o
+§bAg(¢)HA/\*HE+§cAg(¢)HA/\HE+*V(¢)+5dAinA/\FZ AAJ} . (3.1)

In this expression, F* and H® are the 2- and 3-form field strengths, defined by
F' = dA*,
H" = dB" + dh; AT ndAT
invariant under the Abelian gauge transformations
SAY = —dA?, (3.4)
SBMN = dAM - dt At dAT

1 See appendix A.
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The scalar-dependent kinetic matrices g,y (¢), bax(¢), aij(¢) are symmetric. The first
two of them are positive-definite and the third is negative-definite. The tensor cax(¢) is

antisymmetric. The constant tensors dp;; and dAij have the symmetries!?
dyij=dpgi,  dby=dY, (3.6)
ans satisfy the constraint
A
dpi;d py =0, (3.7)

for the last term in the action to be gauge-invariant. We will later choose the arbitrary
constant € to have simple duality rules for the 2-forms.
If we vary the 1-forms and 2-forms in the action, we get

5S ' A 05
68 = / { —JAA Sy (6BM +dM ;AT A GAT) A *Mﬁ} , (3.8)
where
(/5:-/5 j A j k l
*5Ai =d al'j*F]—Qd ijA]/\[JA+5dAklA /\dA]
9 ,
—26dAinA NA — gedAijdAklAjk AN dAl} , (3.9)
where we have defined
JA EbAE*Hz—i-CAEHE, (3.11)

and where we have used the Bianchi identities and the property eq. (3.7) in order to write
the equations of motion of the vector fields as total derivatives.

3.1.1 The magnetic 2-forms By

The equations of motion of the 2-forms B» suggest the definition of the magnetic 2-forms
Bp through
dBpy = JA + edAiin AdAT . (3.12)

Since Jy is gauge-invariant, we define the dual 3-form field strengths by
Hy = Jy :dBA—e’fdAiin/\dAj. (3.13)

We set ¢ = —1 to make the magnetic and electric 3-form field strengths as similar as
possible. Thus, we can replace the equations of motion of the electric 2-forms, via the
above definition of the magnetic field strengths, by a Bianchi identity.

2The Chern-Simons term containing da ij in the Lagrangian is clearly symmetric in ij up to total
derivatives. The terms containing dA»L’j, which appear in the field strengths H" are symmetric up to a field
redefinition of B2,
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In d = 6 dimensions it is possible to constrain the 2-forms to have self- or anti-self-dual

field strengths. We can write these constraints in the form
CAQ(HQ—CQZJg) =0, (3.14)

where (*¥ = ()y is a diagonal matrix whose diagonal components can only be +1 for
self-dual 3-form field strengths, —1 for anti-self-dual 3-form field strengths or 0 for uncon-
strained 3-form field strengths. The (anti-)self-duality constraints will be consistent if the
Bianchi identity for H* becomes the equation of motion of B* upon their use. The Bianchi
identities and the equations of motion are

dHY = d*jF' A FY (3.15)
dJy = dpijF' NI, (3.16)
By hitting eq. (3.14) with an exterior derivative we find that the tensors dAl-j, and dj ;
must satisfy the constraint
Con(dhij — (Mdxyy) = 0, (3.17)
for consistency.
3.1.2 The 3-forms C;
The form of the equations of motion of the 1-forms also suggests the definition
dC; = ajj FI —2d% ;A1 N [Jp — dp g A¥ A dAY + 2dp i HA N AT
92 A
+§dAijdAklA]k AdAL, (3.18)

or, using the magnetic 2-forms and the constraint eq. (3.7)

. . 1 .
dC; = agj« FI —2dM;; [AJ A dBar + ng wAF A A (3.19)
where we have defined the 2no-component vectors
M b M "y A
(B ) = s (d ij) = d ']A s (dMZJ) = (dAija d ij) . (3.20)
BA Aij

The gauge-invariant 4-form field strengths GG; can be defined as
Gi = dC; + 2dp i [Aj A dBM + %delAjk ANdAY| (3.21)

which is related to the 2-form field strengths by the duality relation
Gi = a;jx FJ. (3.22)

The 3-forms C; can be redefined in order to make contact with the 3-forms that appear

naturally in the tensor hierarchy. The redefinition is

O PV 1 2dyy 1 BM A AT (3.23)
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so that .
G; = dcznew + 2dMl'j dAT A By + ng klAjk VAN dA| . (3.24)

The Bianchi identity satisfied by G; is
dG; = 2d™ ;;F7 N Hyy . (3.25)
In order to derive this it is useful to note that eq. (3.7) can also be written as
darijd™ iy = 0. (3.26)

3.1.3 Symmetries

Let us momentarily set the d- and (-tensors to zero and consider the symmetries of the
system of equations of motion and Bianchi identities of the 2-forms:

dHM =0, (3.27)
dJy = 0. (3.28)

This system is formally invariant under the GL(2ny,R) transformations

HA
JM/:MNMJN, (JM)

(3.29)
JA

These transformations must be consistent with the definition of J in terms of H*. Writing

AZA BZA
MM = , 3.30
(™) ( o DS, (3.30)

we find that, for consistency, the symmetric and antisymmetric kinetic matrices bps, cay
must transform according to

f'=(C+Df)(A+Bf) !, (3.31)
f"'=—(C-Df"A-Bf"), (3.32)

where we have defined the matrix
fax = bax + ceax (3.33)
Consistency between the two transformation rules implies
ATC+CTA=0, B'™D+DT'B=0, ATD+CTB==¢Lxn,. (3.34)

The constant £ has to be 41 in order to preserve the energy-momentum tensor. The
same conditions can be derived from the requirement that the matrix My™ preserves the

I
off-diagonal metric (n™V) = (H 0 Lngxn, >, that is

ng XNn9 0

MyPnpoMy® = nun . (3.35)
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Thus, the system of 2-form equations of motion and Bianchi identities is invariant
under symmetries that can be embedded into SO(ng, n2). The off-diagonal metric n can be
used to raise and lower M, N = 1,--- ,2ny indices, in agreement with the definitions (3.20)
of the vectors dMij and dpy ;.

Only those transformations of the matrices bps; and cpy that can be compensated
by a reparametrization of the scalar manifold leaving invariant the target-space metric
Gzy (@) will be symmetries of the theory. Furthermore, the reparametrizations of the scalar
manifold must induce linear transformations M;’ of the 1-forms’ kinetic matrix a;;(¢) that
can be compensated by the inverse linear transformation acting on the 1-forms.

Defining the SO(ng, ng) generators by

My ~ 60N + ATy N, (3.36)
we find that the above constraint implies

Tuany =Ta" nvyp =0. (3.37)

As discussed above, the same transformations must also act linearly on the 1-forms, and,
therefore, we can define the generators in the corresponding representation:

M ~ 67 +a Ty . (3.38)
In both representations, the generators T4 satisfy the same Lie algebra
[T, Ts) = = fas“Tc . (3.39)

Since (part of) the symmetry group can act trivially on either vectors or 2-forms we allow
some of the generators T4 to be zero. It is for example possible that some symmetry gener-
ators act trivially on the 2-forms while they transform some of the scalars and vectors. In
this case we have vanishing generators T)45;”" and non-vanishing T4;7. Still both (formally)
satisfy the above algebra.

The (-tensor can be redefined in an SO(ng, ns)-covariant way:

Mo [ 0 ¢ AS
(C N) = CAZ 0 s <A2 = C ) (340)

so the (anti-) self-duality constraint takes the form

My(IN —=NpJh) =o0. (3.41)

3.2 (Gaugings and massive deformations

In general the above theory will have a group of global symmetries G with constant pa-
rameters ad. As discussed in the previous section, infinitesimally, these global symmetries
act on the scalars ¢%, 1-forms A’ and electric and magnetic 2-forms BM as

0ad® = atka™(9), (3.42)
5o AL = oMy ;T AT (3.43)
6o BM = oATy yMBY (3.44)
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where the matrices T4 5/ are generators of SO(ng, n2), i.e. they satisfy eq. (3.37), and the
ka®(¢) are Killing vectors of the metric g,,(¢). Some of the matrices and Killing vectors
may be identically zero. They satisfy the algebras eq. (3.39) and [ka, k] = —fapkc.

These transformations will be global symmetries of the theory constructed in the pre-
vious section if the following five conditions are met:

1. The vectors ka*(¢) are Killing vectors of the metric g, (¢) of the scalar manifold.

2. The kinetic matrices a;j, fax, = bax, + cax, satisfy the conditions

£aai; = =2Tx i ajy, (3.45)
Lafas = —Tans + 274\ fryo — Ta™ foafrs, (3.46)

where £ 4 denotes the Lie derivative along the vector k4 and the matrices T4 are
different components of some of the generators of SO(ng,n2) in the fundamental

representation
Tas T,=A
MNM ~ Tonyxon, + @ Tan™ = Topywon, +a : (3.47)
Tasa Ta*a
3. The deformation tensor dps,; is invariant
Sadarij = Yami; = —Tan dnij — 2Ta ("darjyr = 0. (3.48)
4. The scalar potential is invariant
£4V =kaV =0. (3.49)
5. The (-tensors is invariant
5aCMy =Tap™M(Pn = Tan"¢Mp=0. (3.50)

As we did in the 5-dimensional case, we will relax some of these conditions to construct
a gauged theory. In the next section when we construct the tensor hierarchy and the action
we only require invariance of djs;; under that subgroup of G that is gauged. Taking the
limit in which all deformation tensors but dj;; vanish we recover the results of this section
and in particular the action will generically only be invariant under a subgroup of G. The
(-tensor on the other hand is not a deformation tensor and we therefore have the condition
that it must be an invariant tensor of the symmetry group.

To gauge the theory we introduce, as in the 5-dimensional case, the embedding tensor
94, subject to the quadratic constraint (eq. (2.20) with the indices I,.J, K replaced by
i, J, k) which reflects its gauge-invariance. Following the same steps as in the 5-dimensional
case, we introduce the gauge-covariant derivative of the scalars eq. (2.19) and, from the
Bianchi identity associated to it, eq. (2.24), we arrive at the definition of the 2-form field
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strength F given in eq. (2.28) up to the undetermined term AF" subject to the condition
eq. (2.29). Gauge-covariance of F' implies the gauge transformation eq. (2.30) for AF?,
which we rewrite here for convenience:

A . T 1 .
ONAF! = —DAA"+2X gy | ATFF + S AT N Gp A (3.51)
In this case, in order to satisfy the constraint 9;AAF" = 9,AAA" = 0 it is natural to
introduce a matrix Z*M satisfying
QM =9, AzM =, (3.52)
and define
AF =7MB, AA' = —ZMAy, (3.53)
where Ajs is the 1-form gauge parameter under which the 2-forms Bj; must transform.
Then, the gauge transformation of AF? implies

) ) A , 1 .
Z™MsyBy = ZMD Ay + 2X (i)' [AJF’“ + 54N 6AA’“} : (3.54)

This solution will only work if X (jk)i ~ ZMO, jk for some tensor Oy j;, symmetric in jk.
It is natural to identify this tensor with the tensor djs j, that we know can be introduced
in the physical theory so that

. 1 .
SaByv = DAy + 2dar i [AJF’“ + 54N 5AA’“} + AByy, (3.55)

in which Z*™ AB); = 0. With this choice for we find agreement with what was found in
the previous subsection obtained by setting ¢;4 = Z*M = 0.
We impose the constraint

iji = X(]k)l — ZZMdek = 0, (356)

where we have chosen the normalization of djs j, to recover the expression we got in the
previous section. We thus find

. 1 o 4
Fi = dA" + ixjkmﬂf +72MBy, (3.57)
OAAL = —DAN - ZM A, (3.58)
1 4
SaByr = DAy + 2dps 1 (AkFl + §Ak A 5AAl> +ABy,  ZMABy =0, (3.59)
where the possible additional term ABj; will be determined by the requirement of gauge-
covariance of the 3-form field strength H ;.

We must require the tensors Z*M and dprij to be gauge-invariant, which leads to
the constraints

QM = —5;20M = _ X3 7" — XM ZIN =0, (3.60)
Qiniji = —Oidnrjie = Xine™ dwv ji + 2X; (' dar ey = 0. (3.61)

This last constraint is clearly weaker than the global invariance constraint Y4 pz;; = 0 in
eq. (3.48).
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3.2.1 The 3-form field strengths H,,

The covariant derivative of the 2-form field strengths ', after use of the generalized Jacobi
identities'? is

) ) . 1 )
DF = Z7iM {’DBM +d jk [AJ A dAF + gxlm’mﬂm} } , (3.62)

which leads us to define the 3-form field strength

DF = zMHy, (3.63)
. 1 .
Hy = DBy +dagji [AJ A dAF + gxlm’mﬂm} + AHyy, (3.64)

where AHj; will be determined, together with ABj; by using gauge-covariance of Hjy,
which is guaranteed by the formalism. To proceed with constructing the hierarchy we do
not need the explicit form of the gauge transformations ABj;. Just as in the 5-dimensional
case we can continue with constructing gauge-covariant field strengths by computing the
Bianchi identities. The form of AHj; will be a contraction of some invariant tensor(s),
that are annihilated by Z*, with some 3-forms. We will determine AHj; simultaneously
with the 4-form field strengths Gj.

3.2.2 The 4-form field strengths G;
The Bianchi identity of Hj; takes the form

DHyr = dyrij F7 +DAHy,
+ZMZ~N{ (Fi— %ZiPBp> /\BN+%dekAijAdAk+1—12Xjk"lenAijkl} , (3.66)
where we have defined the tensor
ZuiN = =X — 2dpy ;27N (3.67)

which is annihilated by Z/M i.e. ZIM 7N = 0 by virtue of egs. (3.52), (3.56) and (3.60).

The simplest Ansatz we can make is to assume that AHy = ZyiVCn® for some 3-
forms Cn*. However, in d = 6 dimensions the 3-forms of a physical theory are dual to the
1-forms, and, therefore, as we have shown in the case that 9,4 = Z*™ = 0, we can only

14

have 3-forms C;. This means that we must define a new!® invariant tensor Z;;* such that

AHy = Zp'Cy, ZM 7zt =0. (3.68)

13In the 6-dimensional theory the generalized Jacobi identity reads X[jkal]mi = %ZiNX[jkmdN”m.

1 In principle Za* and Z% s are unrelated, but we are going to see that we can relate these two tensors,
though. This is not just an economical possibility, but reflects the fact that if a p-form has a stiickelberg
coupling to a (p + 1)-form, then their duals, which will be, respectively, (p + 1)- and p-forms (with p =
d — p — 2), will also have Stiickelberg couplings with the same parameters and reversed roles: the p-form,
dual of the (p + 1)-form, will be the Stiickelberg field of the (p + 1)-form, dual of the p-form.
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In order to make contact with the field strength G; in eq. (3.23) of the theory obtained

for ;4 = Z*M = 0 we must require
ZuiN =22y i,
so that the Bianchi identity will take the form

DHyr = dyrij FPANFI+ Z)/'Gy

+AGZ )
Zu'AG; = 0.

The requirement (3.69) leads to
Ximn = ~2(dpij Z7n + dn i Zu?) -
The antisymmetry of X; sy suggests'® to take
Summarizing we have thus two new constraints:

QimN = Ximn — 427 pdpy; =0,
QY =2Mzi =0,

from which it follows that the tensor
Cunp=duijZ'NZ7p,

is totally symmetric.

The constraint Q¥ = 0 is similar to the constraint 9,49 B

(3.69)

1 1 ; 1 ,
G; = DC;+2d";, [<F”—§ZPMBM> A By +3dn jp AP N dAk—i—EXjk"deApjkl

(3.70)

(3.71)

(3.72)

(3.75)

= 0 in 4 dimensions [11].

We will show the validity of this construction by proving the consistency of the resulting

tensor hierarchy.

3.2.3 The 5-form field strengths K4

If we take the covariant derivative of the Bianchi identity of Hjs we find

Zy'[®G; — 24N ;;FI N Hy) =0,

from which it follows that the Bianchi identity of G; must have the form

DG; =24V ;FI NHy + ADG;,  Zy'ADG; = 0.

158ee footnote 14.
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A direct calculation using the above expression for G; gives the result
j 1
DG; = QdMijF] AN Hy +DAG; —{—19@14 {TAMN (HM — §©BM> N By
1 )
+Tak? [(Fk ~ Z"™MByYACy — édede imATFEA dA™
1 ,
+%lequjqupnAﬂklm"]} : (3.78)

up to terms proportional to the constraint eq. (3.26) which, so far we had not needed.
The reason why we need to use it here is that the term d Mz‘(de k1) 1s not annihilated by
Z'N and we cannot argue that it is proportional to ¥;” times some new tensor. the only

consistent way forward is to use eq. (3.26).
Since Z"M©;4 = 0, we can set AG; = ¥;2Dy4 for some 4-forms D4 and write the
Bianchi identity for the 4-form field strength G; in the form

DG; = 2dM;FI N Hy + 9 Ka, (3.79)

1
KA = @DA+TAMN (H]V[ — §©BIV[) /\BN

1 : 1 :
+Tax? [(Fk = ZMM Bar) A Cp= o d™ g im AN AA™ 4 25 X 1d™ jdag p AT

FAK, (3.80)
9AAK, = 0. (3.81)

3.2.4 The 6-form field strengths L

The covariant derivative of the Bianchi identity of GG; implies that the Bianchi identity for
the 5-form field strengths must be of the form

. 1
DKy =Ta;"FI NG, — 5TAZWVHM ANHy +ADK 4, 9, AADK 4 = 0. (3.82)

It is useful to have some idea of what we can expect concerning ® K 4 according to the
general formalism that we have introduced before.

As we have seen, 6-dimensional gauge theories are determined by three different de-
formation tensors %;4, Z*M dy, ij satisfying the 5 constraints @ = 0:

QWM = 9, AZM (3.83)

QY =z2Mziy, (3.84)

Q' = Xijw' — Z™Md i, (3.85)

Qivn = Xiun — AZ7 prdyyij (3.86)

Qijet = dar i gy (3.87)

plus the three constraints associated to the gauge-invariance of the deformation tensors:
Qi = =60 = 0,2 = 0,2 (fpc0:C — T 0t , (3-88)

QM= —5;2M = ;Y™ = ;N Tuy ' ZFM + Ty M ZN), (3.89)

Quaij = —Ordari; = =9 Yanrij = 96 QT4 g dar jy + Tan™dnij) . (3.90)
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We thus expect three 5-forms E’4, Ejnr, EM% dual to the deformation tensors that
will appear in the field strength K 4 through the term

AKs=YaPE' 5 + YA MEjn + Yan i, EMY. (3.91)
The result of a direct calculation is

. 1
DKy, = TAijJ NG — §TAMNHMN

_ 1 3
+Y4," {—FZ A Dp + %TBkndemlenA”kl NdA™

1 3
+ %TB kszququdenA”klmn}

, 1.
+YA2M {(HM — @BM) ANC; — By A (Gz — ﬁiBDB) — §ZJMCZ']‘
: 1 ,
+d"iFI A Byn + ngiijPBMNP}
. N 1
+Ya™M,; {—F” A By + ZNFI A Byy — gZZNZJPBMNP

1 ) ) 2 ) 1 ) )
—§delAlk/\dAjl—EXklndMnmAZklm/\dA] —ngldenmAZkln/\dAm

1 ) .
. 1_8Xk:l] anququzklmnp}

+DAK Y. (3.92)
If we take ADK 4 to be
ADKA =Ya:PLig + Ya™ Lipg + Yanr ;LM (3.93)

where Lg, Lirr, LM are the gauge-covariant field strengths of the 5-forms E’p, E;s and
EMij | respectively, then we obtain the Bianchi identity for K4 given in eq. (C.19) with
the 6-form field strengths Lig, Ly, LM% given in egs. (C.13), (C.14) and (C.15).

In egs. (C.13), (C.14) and (C.15) we have not specified in detail the Stiickelberg cou-
plings to the 6-forms that we denoted by Fj,. There are in total eight top-forms in 6-
dimensions corresponding to the eight constraints. These eight top-forms are determined
up to massive gauge transformations of the form JF, = 3, such that Wﬁ"Eb = 0. This is
because all the top-forms only come contracted with Wﬁ". In particular theories it can hap-
pen that these massive gauge transformations enable one to complete gauge away certain
top-forms entirely. The massless gauge transformations of the top-forms contain the 5-form
gauge transformation parameter Ay, i.e. Wf&Fb = WﬁbQAb. This parameter also shows up
in the gauge transformation of the 5-form potentials E; as dE; = —Wﬁl’Ab. Depending
on the details of the theory these massive gauge transformation may allow one to entirely
gauge away certain 5-forms.
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3.2.5 Gauge-invariant action for the 1-, 2- and 3-forms

Our starting point to construct a 6-dimensional gauge-invariant action is'6

51 = / {%gmyw)w AXD — Sas(9)F AxF?

—i—%b/\gw)H’\ AxH® + %c/\g(qﬁ)HA ANH® + *V(¢)} , (3.94)

where the covariant derivative and field strengths are those of the tensor hierarchy. This
means, in particular, that

DB¥ = dB> + X; y~A' A BM (3.95)

so the magnetic 2-forms By, occur in this action.

As a general rule, the gauge-invariant action will only differ from this one by
topological Chern-Simons-like terms. Furthermore, the equations of motion will just be
gauge-covariant generalizations of the ungauged ones, up to duality transformations. More
precisely, as a general rule, the equations of motion of the magnetic higher-rank form fields
(here the magnetic 2-forms By, and the 3-forms C;) will just be duality relations, and the
equations of motion of the (electric) lower-rank potentials (here the 1-forms A’ and the
electric 2-forms B*) will be completely equivalent to the hierarchy’s Bianchi identities
after use of the duality relations.

Let us first consider all those which contain the 3-forms C;. Taking into account that
we expect the equation of motion of C; to be a duality relation for the 3-form field strengths,
a reasonable Ansatz for the terms that involve 3-forms is

4 1.
Sy = /ZZECZ' VAN <H§) + §ZJ§)C]‘> , (3.96)
since, if we only vary w.r.t. the 3-forms, we get
5(51 + SQ) = —ZiM(SCZ‘ A [JM — HM] , (3.97)

where J, is given in eq. (3.11) (but with the field strengths H” replaced by those of the
hierarchy) and the upper component of the doublet J M is defined to be J> = H>.

Let us now consider the topological terms containing magnetic 2-forms By. We expect
the equations of motion of the By to give the duality relation between 2- and 4-form field
strengths (up to, possibly, other duality relations). If we only vary By, in S7 + Sy we find
the result

8(S1 + So) = 6Bs A {—Z%[a;;  FI —DC;] + X% A A [Jo + Z70Cy]} (3.98)

whose two terms have the form of incomplete duality relations, in agreement with our
prejudice. If we require that the next term we add to the action, Ss, gives, upon variation

of By, only, the complete duality relations

8(S1+ Sy + S3) = —6Bs A Z%[ay; « FV — Gy + D(J* — H)]} , (3.99)

16We do not consider the Einstein-Hilbert term as it plays no role in the discussion.
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we find that
Sy = /{Bg A {ZiZ [ng iifP ABS +gi + %d“inkﬂA’“ A Bg]
12d% ;77 AT A dBo+ X AT A [—hg +X;or A7 A BF+%XJ- ol A7 A BF} }
—i—édMijZiNZjPBMNP — édAijZingQBAEQ} , (3.100)

where f7, hq and g; are, respectively, the part of the field strengths F7, Hg and G; that
only depend on the 1-forms A7, i.e.

. 1.
I =dAl + 5X,de’*“, (3.101)
. 1 .
hy = demAJ ANdA™ + ngijklmA]kl , (3.102)
2 ; 1 ;
gi = ngide klA]k AdAY + édMidelemnlAjkmn . (3.103)

Observe that S3 does not contain any 3-forms and, therefore, the variation of the action
w.r.t. the 3-forms, eq. (3.97), does not change when we add Ss.
We next consider the variations w.r.t. the electric 2-forms B*. These should give the

equations of motion of the electric 2-forms up to duality relations. Adding

1 o
Sy = /{dEisz A fY7+ gdAijzlgz]QBAEQ
+X;50A" AW A BE 4 2d5 ;20 A7 A dBE A BY

1 A ,
+§ (dzz‘jZZQXklj — Xy 2FX[FQ) AW AN BZQ} R (3.104)

we find that varying only w.r.t. B> gives
§(S1 + S + 83+ S4) = =B AN Z's[ai; x FY — Gi] +D(Js — Hy)}, (3.105)

which, upon duality relations gives the hierarchy’s Bianchi identity of the magnetic 3-form
field strengths Hs. S4 does not contain any 3-forms or magnetic 2-forms and, therefore,
adding S4 does not change neither eq. (3.97) nor eq. (3.99).

Finally, let us consider the variation of S; w.r.t. the 1-forms A’ only. We can write the

result in the form

i 08
(551 =0A' A {—* E + Sl} s (3106)
where we have defined
oS ; M i A .
*5Ai:©(aij*Fj)_2d z‘ij/\JM_ﬁi *xJA

+dM ;AT A [ZkM(akl * F' = Gy) + D (I — HM)]

) .
+ [2dMBN + ng 1idn kiAJk] AN ZM [Ty — Hyyl, (3.107)
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and

si = —ds; ZFE AT NGy — (2ds i F7 4 d% Xy o AT N H
—|—[XZ'MEBM + dzl[ink}lAjk — dQZ’ijQEAjk — QdEij(Fj — dAJ)] N Hsx.
—dzijdg klAj A FFRE (3.108)

While this definition is mainly based on intuition, we can check that the variations of
the pieces Sy, S5 and Sy w.r.t. A* only contribute to s;: the variation of Sy w.r.t. A* cancels
all the terms in s; containing the 3-forms C;; the variation of Sg w.r.t. A’ cancels all the
terms in s; containing the magnetic 2-forms By, and the variation of S; w.r.t. A’ cancels
all the terms in s; containing the electric 2-forms B>, leaving unchanged what we have
defined as % Thus, we only need to see if there exists an S5 whose variation w.r.t. A’
cancels the terms in s; that only depend on the 1-forms A*’. In other words: we have to
determine the integrability of the terms in §A’ A s; that only depend on 1-forms. This

highly non-trivial requirement is satisfied and S5 is given by
1 iy
Sy = 1 [dgikdzjl — dzikdgjl] A dAM

2 1 g
+ X" [1—5612 k™1 — gdzkmdz lp] ATRE A gA™
1 1 g
+3 |:dz] ipd” jq + gdzipdz jq] Xpi? X 4 AlIRIMN (3.109)

It is evident that this additional term does not modify the variations of the total action!'”

S=S+---+85;5 (3.110)

w.r.t. the 3- and 2-forms.
We, thus arrive at the following result:

_ :, 09 i 08 M _ gM . gi p 54 05

) A
- [5& + 2dps i BM AN GAT + ngideklAJ’f A 5Al} p 25 } . (3.111)

0C;
where

S 1 i 1oy

* w = Juy® * DY + 561%5‘ AxF7 — §H A Opdyr — %0,V , (3.112)
58 i

=7 —H A1

5C; (Jar — Hur), (3.113)
55 N .

*—5Ai :’D(aij*F])—Qd z‘jF]/\JM_ﬁi *xJA - (3.115)

17 A similar action for the case of the maximal 6-dimensional supergravity theory was constructed in [16].
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We can now relate the equations of motion derived from this action and the tensor

hierarchy’s Bianchi identities via the duality relations

aijx FI = Gy, (3.116)
Ju = Huw, (3.117)
xja = Ky, (3.118)
ov
— = Ly. 3.119

*8Cﬁ # ( )

With these duality relations, the 3-form and magnetic 2-form equations of motion are
automatically solved. The electric 2-form equations of motion become the hierarchy Bianchi
identity of the magnetic 2-forms. The 1-form equations of motion become the hierarchy’s
Bianchi identity of the 4-form field strengths ;. The projected scalar equations of motion
ka®x % become the hierarchy’s Bianchi identity of the 5-form field strengths K 4 if we use
that kaa;; = —2T'4 (ikaj)k as well as HM ANkadyr = —Ta ™ JM A Jy, the Killing property
of the k4™ and the fact that

ov
kaV = ZYAﬁw : (3.120)
t

In section 3.1.1 we discussed the possibility of having (anti-)self dual 2-forms and we
found that this can be described by the tensor ¢ 5. We could ask the same question now
in the context of a gauged theory with massive deformations. The (anti-)self duality can

again be written as

MY —Npg?y =0, (3.121)

where now J¥ contains the hierarchy field strengths H . This condition must be consistent
with the equations of motion. After hitting the condition with a covariant derivative we

find the following consistency conditions: eq. (3.17) and
MyzN —NpziPy =0. (3.122)

The (-tensor is not predicted by the tensor hierarchy because it cannot distinguish
between (A)SD or non-(A)SD 2-forms. This concept only exists once equations of motion
are defined.

The gauge transformations that leave the action invariant can be written as
SA" = —DAN — ZM Ny, (3.123)
1 A .
0By = DAy + 2sz'j (AZF] + 5142 VAN (5A]> —Zy"ANi + AByy (3.124)

0C; = DA + 2dn i ATV = 2d i AN A FI
9 .
—2dp ;BN N SAT — ngideklA]k ASAL. (3.125)
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. Gauge Interpretation Stiickelberg )
Potential . o Existence
transformation | (field strength dual to) pair with
By massive Iy ZwCs VM :Z#0
ZM By, massless Z™M Jor ungauged A’ Vi: Z"M £
By massless Jm none VM : ZM =(
C; massive aiij 94Dy Vi 440
Z'Ci massless ZiMaiij By VM :Z#0
C; massless ajj Fi none Vi A=2Z0=0
Dy massive symnféitfriﬁeﬁfby v YAﬁEﬁ VA:YAR£0
94D 4 massless current ja of C; Vi 440
gauged symmetry
Dy massless current j of none VA: YAt =9,4=0
global symmetry
Ey massive oV /dct Wﬁbe Vi Wﬁ" #0
YAﬁEﬁ massless Y40V /0ct Dy VA:YAR£0
E; massless oV /oct none Vi =Y =0
Wﬁbe massless enforces constraints Ey Vi Wﬁ" #£0

Table 2. All the p > 2 forms of the 6-dimensional tensor hierarchy, their Stiickelberg properties
and physical interpretation.

To prove this we only need the following Noether identities associated to the invariance

under gauge transformations whose parameters are, respectively A*, AM and A;,

58 M 58 P v . 08
92K AT x4 2dM FT A w2 1+ 2 =2 —0, 12
Dx = +0i"ka “5or T i Nxsmrr o+ 2da i3 A(Scj 0, (3.126)
5S .58 .58
O k=2 9day i F A = 12
D * 5BM M*(;AZ dMU A 50] O, (3 7)
5S . 5S
— M = — . 12
©5CZ~ *opr = 0. (3.128)

We note that these gauge transformations are exactly those of the hierarchy except for the

3-form gauge transformation eq. (3.125) which can be written as

6C; = 6,C; + 2dpn ;N (TN — HY), (3.129)

in which 6,C; (together with the 1-form §A° and 2-form gauge transformations dByy) is
the gauge transformation under which HM transforms gauge-covariantly.

We end this section by giving an overview in table 2 of the 6-dimensional tensor

The way in which table 2 should be read is
entirely analogous to the 5-dimensional case discussed at the end of section 2.2.5.

hierarchy and its physical interpretation.
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4 Discussion

Without making reference to any particular details of a 5- or 6-dimensional field theory
we have constructed the tensor hierarchies for such theories and the corresponding gauge-
invariant actions. We have found the dualities that relate these two structures.

Our results, together with those of refs. [11, 12] reveal a number of generic features

that must be common to all tensor hierarchies:

1. The field content of a particular tensor hierarchy provides an exhaustive list of all
possible potentials that one can introduce into a theory. The generic tensor hierar-
chies that we have constructed provide a minimal list. Depending on the existence
of additional theory-specific constraints (as in the N = 1,d = 4 supergravity case),

more potentials may be included.

2. In general, the deformation parameters of any field theory!'® are of three differ-
ent kinds:

(a) The embedding tensor ¥, which determines the gauge group and gauge couplings.

(b) The Stiickelberg tensors Z that will determine the couplings between p-forms
and (p + 1)-forms and between their respective duals, the (p + 1)- and p-forms
(withp=d—p—2).

(¢) The Chern-Simons tensors d which determine the Chern-Simons terms in the
field strengths and action.

3. As explained in the introduction, the tensor hierarchy will contain one (d — 1)-form
potential (“de-form”) conjugate to each deformation parameter. In a democratic for-
mulation, the de-forms will enforce the constancy of the corresponding deformation
parameters. There may be additional top-forms associated to theory-specific con-
straints which cannot be studied in our generic models. It is unclear if there might be
additional top-forms whose gauge transformations are unconnected to the hierarchy.”

4. These deformation parameters will be subject to four generic kinds of constraints:

(a) Constraints that enforce the gauge-invariance of all deformation tensors:
09 =0,06Z =0, dd =0. The first of these is the standard quadratic constraint
of the literature.

(b) Orthogonality constraints between the embedding tensor and the first
Stiickelberg tensor ¥ - Z = 0 and between each Stiickelberg tensor and the next
one Z - 7' = 0.

8In this list we are obviously leaving aside deformations such as the cosmological constant in non-
supersymmetric theories, which are unrelated to massive or massless gauge symmetries. These deformation
parameters do not couple to the hierarchy’s p-form potentials and, therefore, are unaccounted for by it.

19What is also still an open question is how to construct the tensor hierarchy of a theory without vectors
such as the type IIB supergravity theory.
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(c) Constraints that relate the X matrices with the Chern-Simons and Stiickelberg
or embedding tensors: X ~ Z-d = 0. The so-called linear or representation
constraint of the 4-dimensional theories can be viewed as an example of this
kind of constraints.

(d) Constraints between products of Chern-Simons tensors d - d = 0.

5. As explained in the introduction, the tensor hierarchy will contain a top-form
potential conjugate to each of the constraints satisfied by the deformation ten-
sors. In a democratic formulation, these top-form potentials will enforce the
corresponding constraints.

6. In d-dimensions, a gauge-invariant action for the physical theory can be constructed
using just the forms of rank 1 to [d/2] (i.e. 2 in d = 4,5 and 3 in d = 6,7 etc.). The
gauge transformations will be identical to those of the tensor hierarchy up to duality
relations. These duality relations are essential to relate the tensor hierarchy to the
physical theory and fix the way all the fields appear in the Lagrangian except for
those scalars that are not participating in isometry currents.

A tensor hierarchy together with a set of duality relations for its field strengths (a
structure called duality hierarchy in ref. [11]) is clearly a powerful tool to construct the
most general bosonic field theory in a particular dimension. This can then be used as a
starting point for the construction of more general supergravity theories by subsequently
supersymmetrizing the hierarchy.
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A Conventions and some formulae

We use mostly-minus signature both in 5- and 6-dimensions.
p-forms are normalized as follows

1
w= awm..ﬂpdm’“ A Ndatv . (A1)
The exterior product of a p-form w and a ¢-form 7 is

1
wAn= @wm---uﬂm---uqdﬁm Ao NdabP Nda™ Ao N date (A.2)
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so, its components are

(»+q)
(w A n)ﬂl"'ﬂzﬂrq = p!q! w[ﬂl"'ﬂpnﬂp+l"'ﬂp+q] : (A3)
The exterior derivative of a p-form w is
1
dw = H@,,wm...ﬂpdx” Adxtt AN A datr (A.4)
so, its components are
(dw)ﬂl"'ﬂzp+l = (p + 1)a[u1wu2-"ﬂp+1} : (A'5)
The d-dimensional volume form is, with mostly minus signature,
g _ (=)
VI0gldie = ——¢ ..y dat™ A - datd (A.6)
d!\/lg]
where we have defined the completely antisymmetric symbol such that (in curved indices)
1@ = 41, €o1--(d—1) = g = detg = (=1)"|g]. (A7)
The components of the Hodge dual of a p-form w are defined by
1
(*‘U)m---ud—p = - em...ud_pyl.__ypwvl v (A.8)
Zavary

SO

1
|em...ud_p,,l...pr”l""’Pdm“l Ao Ndxha-r . (A.9)

W= -
pi(d —p)'V/Ig
Then, for p-forms w in d dimensions, with mostly minus signature,

*w = (=1)d PP, (A.10)

It follows that for 3-forms H in 6 dimensions we have x> = +1 so that we can have real
self- and anti-self-dual 3-forms H*

H* = %(H +«H), «H* =+H*. (A.11)

A d-form Q in d-dimensions is always proportional to the volume form. We can
always write

Q = K+/|g| d%z,

— 1 M1 td Q)

d'\/m M1 Mg * (A12)
Using this property, we find the following formulae in d dimensions

* R = (=1)41R/|g|d% (A.13)
d Axdp = (0¢)*\/|g| d=, (A.14)

-1 d—1
FAxF = %F%/\gyddm, (A.15)

1
HA+H = gHQ\/|g| dlz (A.16)
- 1 -

HAH = 5JLJW,,(*H)M%/|g| dlz . (A.17)
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B Summary of the general 5-dimensional tensor hierarchy

B.1 Deformation tensors and constraints

The deformation tensors of 5-dimensional field theories are 974, 21/ = ZUJ and Cjyx =
C(17r)- They are subject to the constraints

Qrt = —0/8Yp,A =920, fpc — Tp 59kt (B.1)
Q" = —0 YK =29,y [ 25 (B.2)
Qrixr = =V Yaxr =39 Ta (M Creryar s (B.3)

which express the gauge-invariance of the deformation tensors and
QM = v, 77, (B.4)
Qix" = X' = Z"Crkr. (B.5)
B.2 Field strengths and Bianchi identities

The tensor hierarchies of general 5-dimensional bosonic field theories have 1-forms A’, 2-
forms By, 3-forms Cy, 4-forms D!, Dy, DX and 5-forms E!Y 4, B! jic, EIVEL Ea;
and B!/ . The field strengths of the 1-, 2-, 3- and 4-form fields are given by

1
Fl = qA’ + 5XJKIAJK + 7By, (B.6)
1
H; = DBy + Cryx A7 A dAK + chM[JXKL]MAJKL +94Cy, (B.7)
1 1
Ga=29C4+ TAKI [(FK — §ZKLBL> A Br + gC[LMAKL A dAM
1
+EC'1LPXMNPAKLMN] +Ya Dy 4+ YarPDp! + Yarx D5 (B.8)

1
KIB = :DDIB + (FI — ZILBL) ANCg + —TBJMCKMLAIJK A dAL

12
1
+@TB INCrpn Xy T AVEEM Lyl PERT, — 2V B — Te ! Ej7E
~Ys'5El K, (B.9)

Krj =Dy — [HU — %@BU} A By +2Xg"ER jp — Crrp BN
91 Eay, (B.10)
KK — oplIK | éA(I A dATE) 4 iXLM(KAHLM A dAM
+2_10XLM(JXNPKAI)LMNP 43X U ELVEOM L LU g JK) (B.11)
and are related by the Bianchi identities

oF! = 7V H;, (B.12)
DH; = CryF'E +9/4G (B.13)
DGA = Tax FE NH + YA K1y + YarPK g+ Yarx KK, (B.14)
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B.3 Duality relations

H[ZCL[J*FJ, (B.15)
GA = *jA7 (B16)
ov

C Summary of the general 6-dimensional tensor hierarchy

C.1 Deformation tensors and constraints

The deformation tensors of 6-dimensional field theories are ¥;4, Z"M and dy, i = d (i5)-

They are subject to the constraints

Qi = ;%Y = 9,8 (fpc0:C — T, (C.1)
jSM — —ﬁjAYAiM — _ﬁjA(TAkiZkM + TANMZZ'N)’ (02)
Qrumij = =AY ani; = 96 (2T i dar jy + Tane diig) | (C.3)

associated to their gauge-invariance and, furthermore, to the constraints

QAM = g, AziM (C.4)
QY = zMziy (C.5)
Qir' = Xjn' — Z™Mdn ji (C.6)
QivmN = Ximn — 427 prdnyi; (C.7)
Qi = dar ijd ky - (C.8)

C.2 Field strengths and Bianchi identities

The tensor hierarchies of general 6-dimensional bosonic field theories have 1-forms A°, 2-
forms By, 3-forms C;, 4-forms D 4, three types of 5-forms E’ 4, E;pr, EM Y and eight types
of 6-forms (that we will only refer to collectively as F}). The field strengths of the 1- to
5-form potentials are given by

) 1 o .
F' = dA" + §Xjk2AJ’f +zMBy, (C.9)
. 1 . )
Hy = DBy + dagji [AJ A dAF + gle’w“ﬂ} — Z'Cy, (C.10)
N 1 oM 1 ‘ [ ikl
G;, =9C; +2d ip Fp—§Zp By /\BN—i-ngjkApj/\dA +EXjk dn 1A
+79iADA, (C.11)
1
Ka =©Dy+T,MY (HM — 5@BM> A By
1 .
+T 4k [(Fk - ZkMBM) A Cp— édede imATFEA dA™
1 . . ) .
+ _lequjqupnA]klmn]+YAiBEZB +Ya M B+ Ya i EMY (C.12)

30

,38,



1 -
L'g = @EZB FZ/\DB—i- —Tgi"d ]mlenA”kl/\dAm

30
1 i'klmn 8Qb
+80Tkale avy jqupnA] 879 5 (C.13)
1 .
Liyg = OFijv + (HM — @BM) A Cz — By A (Gz — 192‘BDB) — §ZJMCZ‘J'
dN, FI A\ B d 7P B aQb —F], C.14
+ ij MN + 3 ij MNP+ 5577 (9ZZM ( : )

Ly = DEy" — F9 ABy + ZNFI A Byy — gZ“VZJPBMNp
1 ‘ . 2 , o ‘ ‘
__delAZk A dAT — EXklndMnmAlklm AdAT — 3XkldenmAZkln A dA™

oQP

__Xkl]anqu quzklmnp +

. 1
13 F (C.15)

These field strengths are related by the following Bianchi identities

DF = ZMH)y, (C.16)
DHy = dyijF7 — 7'y Gy, (C.17)
DG; = 24" FI N Hy + 19z‘AKA, (C.18)
1
DK =Taj F]/\Gk 2 HMN
+Ya "L + YAiMLiM + YaMii L (C.19)

C.3 Duality relations

Hy = Jy =basx H® + cax H”, (C.20)

GZ' = Q45 *Fj, (C.Ql)

KA = *jA s (C.22)
ov

Ly = xo—— . C.23

i *acﬁ ( )
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